Design, development and performance evaluation of pressure sensor using eddy current displacement sensing coil

Sensor Review ◽  
2018 ◽  
Vol 38 (2) ◽  
pp. 248-258
Author(s):  
Gobi K. ◽  
Kannapiran B. ◽  
Devaraj D. ◽  
Valarmathi K.

Purpose The conventional strain gauge type pressure sensor suffers in static testing of engines due to the contact transduction method. This paper aims to focus on the concept of non-contact transduction-based pressure sensor using eddy current displacement sensing coil (ECDS) to overcome the temperature limitations of the strain gauge type pressure sensor. This paper includes the fabrication of prototypes of the proposed pressure sensor and its performance evaluation by static calibration. The fabricated pressure sensor is proposed to measure pressure in static test environment for a short period in the order of few seconds. The limitations of the fabricated pressure sensor related to temperature problems are highlighted and the suitable design changes are recommended to aid the future design. Design/methodology/approach The design of ECDS-based pressure sensor is aimed to provide non-contact transduction to overcome the limitations of the strain gauge type of pressure sensor. The ECDS is designed and fabricated with two configurations to measure deflection of the diaphragm corresponding to the applied pressure. The fabricated ECDS is calibrated using a standard micro meter to ensure transduction within limits. The fabricated prototypes of pressure sensors are calibrated using dead weight tester, and the calibration results are analyzed to select the best configuration. The proposed pressure sensor is tested at different temperatures, and the test results are analyzed to provide recommendations to overcome the shortcomings. Findings The performance of the different configurations of the pressure sensor using ECDS is evaluated using the calibration data. The analysis of the calibration results indicates that the pressure sensor using ECDS (coil-B) with the diaphragm as target is the best configuration. The accuracy of the fabricated pressure sensor with best configuration is ±2.8 per cent and the full scale (FS) output is 3.8 KHz. The designed non-contact transduction method extends the operating temperature of the pressure sensor up to 150°C with the specified accuracy for the short period. Originality/value Most studies of eddy current sensing coil focus on the displacement and position measurement but not on the pressure measurement. This paper is concerned with the design of the pressure sensor using ECDS to realize the non-contact transduction to overcome the limitations of strain gauge type pressure sensors and evaluation of the fabricated prototypes. It is shown that the accuracy of the proposed pressure sensor is not affected by the high temperature for the short period due to non-contact transduction using ECDS.

Sensor Review ◽  
2019 ◽  
Vol 39 (4) ◽  
pp. 612-621
Author(s):  
K. Gobi ◽  
B. Kannapiran ◽  
D. Devaraj ◽  
K. Valarmathi

Purpose In Aerospace applications, the inlet tubes are used to mount strain gauge type pressure sensors on the engine under static test to measure engine chamber pressure. This paper aims to focus on the limitations of the inlet tube and its design aspects to serve better in the static test environment. The different sizes of the inlet tubes are designed to meet the static test and safety requirements. This paper presents the performance evaluation of the designed inlet tubes with calibration results and the selection criteria of the inlet tube to measure combustion chamber pressure with the specified accuracy during static testing of engines. Design/methodology/approach Two sensors, specifically, one cavity type pressure sensor with the inlet tube of range 0-6.89 MPa having natural frequency of the diaphragm 17 KHz and another flush diaphragm type pressure sensor of the same range having −3 dB frequency response, 5 KHz are mounted on the same pressure port of the engine under static test to study the shortcomings of the inlet tube. The limitations of the inlet tube have been analyzed to aid the tube design. The different sizes of inlet tubes are designed, fabricated and tested to study the effect of the inlet tube on the performance of the pressure sensor. The dynamic calibration is used for this purpose. The dynamic parameters of the sensor with the designed tubes are calculated and analyzed to meet the static test requirements. The diaphragm temperature test is conducted on the representative hardware of pressure sensor with and without inlet tube to analyze the effect of the inlet tube against the temperature error. The inlet tube design is validated through the static test to gain confidence on measurement. Findings The cavity type pressure sensor failed to capture the pressure peak, whereas the flush diaphragm type pressure sensor captured the pressure peak of the engine under a static test. From the static test data and dynamic calibration results, the bandwidth of cavity type sensor with tube is much lower than the required bandwidth (five times the bandwidth of the measurand), and hence, the cavity type sensor did not capture the pressure peak data. The dynamic calibration results of the pressure sensor with and without an inlet tube show that the reduction of the bandwidth of the pressure sensor is mainly due to the inlet tube. From the analysis of dynamic calibration results of the sensor with the designed inlet tubes of different sizes, it is shown that the bandwidth of the pressure sensor decreases as the tube length increases. The bandwidth of the pressure sensor with tube increases as the tube inner diameter increases. The tube with a larger diameter leads to a mounting problem. The inlet tube of dimensions 6 × 4 × 50 mm is selected as it helps to overcome the mounting problem with the required bandwidth. From the static test data acquired using the pressure sensor with the selected inlet tube, it is shown that the selected tube aids the sensor to measure the pressure peak accurately. The designed inlet tube limits the diaphragm temperature within the compensated temperature of the sensor for 5.2 s from the firing of the engine. Originality/value Most studies of pressure sensor focus on the design of a sensor to measure static and slow varying pressure, but not on the transient pressure measurement and the design of the inlet tube. This paper presents the limitations of the inlet tube against the bandwidth requirement and recommends dynamic calibration of the sensor to evaluate the bandwidth of the sensor with the inlet tube. In this paper, the design aspects of the inlet tube and its effect on the bandwidth of the pressure sensor and the temperature error of the measured pressure values are presented with experimental results. The calibration results of the inlet tubes with different configurations are analyzed to select the best geometry of the tube and the selected tube is validated in the static test environment.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Kamran Soltani ◽  
Ghader Rezazadeh ◽  
Manus Henry ◽  
Oleg Bushuev

Sensor Review ◽  
2015 ◽  
Vol 35 (1) ◽  
pp. 85-97 ◽  
Author(s):  
C.L. Yang ◽  
A. Mohammed ◽  
Y Mohamadou ◽  
T. I. Oh ◽  
M. Soleimani

Purpose – The aim of this paper is to introduce and to evaluate the performance of a multiple frequency complex impedance reconstruction for fabric-based EIT pressure sensor. Pressure mapping is an important and challenging area of modern sensing technology. It has many applications in areas such as artificial skins in Robotics and pressure monitoring on soft tissue in biomechanics. Fabric-based sensors are being developed in conjunction with electrical impedance tomography (EIT) for pressure mapping imaging. This is potentially a very cost-effective pressure mapping imaging solution in particular for imaging large areas. Fabric-based EIT pressure sensors aim to provide a pressure mapping image using current carrying and voltage sensing electrodes attached on the boundary of the fabric patch. Design/methodology/approach – Recently, promising results are being achieved in conductivity imaging for these sensors. However, the fabric structure presents capacitive behaviour that could also be exploited for pressure mapping imaging. Complex impedance reconstructions with multiple frequencies are implemented to observe both conductivity and permittivity changes due to the pressure applied to the fabric sensor. Findings – Experimental studies on detecting changes of complex impedance on fabric-based sensor are performed. First, electrical impedance spectroscopy on a fabric-based sensor is performed. Secondly, the complex impedance tomography is carried out on fabric and compared with traditional EIT tank phantoms. Quantitative image quality measures are used to evaluate the performance of a fabric-based sensor at various frequencies and against the tank phantom. Originality/value – The paper demonstrates for the first time the useful information on pressure mapping imaging from the permittivity component of fabric EIT. Multiple frequency EIT reconstruction reveals spectral behaviour of the fabric-based EIT, which opens up new opportunities in exploration of these sensors.


Sensor Review ◽  
2020 ◽  
Vol 40 (5) ◽  
pp. 529-534
Author(s):  
Igor S. Nadezhdin ◽  
Aleksey G. Goryunov

Purpose Differential pressure is an important technological parameter, one urgent task of which is control and measurement. To date, the lion’s share of research in this area has focused on the development and improvement of differential pressure sensors. The purpose of this paper is to develop a smart differential pressure sensor with improved operational and metrological characteristics. Design/methodology/approach The operating principle of the developed pressure sensor is based on the capacitive measurement principle. The measuring unit of the developed pressure sensor is based on a differential capacitive sensitive element. Programmable system-on-chip (PSoC) technology has been used to develop the electronics unit. Findings The use of a differential capacitive sensitive element allows the unit to compensate for the influence of interference (for example, temperature) on the measurement result. With the use of PSoC technology, it is also possible to increase the noise immunity of the developed smart differential pressure sensor and provide an unparalleled combination of flexibility and integration of analog and digital functionality. Originality/value The use of PSoC technology in the developed smart differential pressure sensor has many indisputable advantages, as the size of the entire circuit can be minimized. As a result, the circuit has improved noise immunity. Accordingly, the procedure for debugging and changing the software of the electronics unit is simplified. These features make development and manufacturing cost effective.


Sensor Review ◽  
2016 ◽  
Vol 36 (4) ◽  
pp. 405-413 ◽  
Author(s):  
Semih Dalgin ◽  
Ahmet Özgür Dogru

Purpose The purpose of this study is to investigate the effect of internal and external factors on the accuracy and consistency of the data provided by mobile-embedded micro-electromechanical system (MEMS) pressure sensors based on smartphones currently in use. Design/methodology/approach For this purpose, sensor type and smartphone model have been regarded as internal factors, whereas temperature, location and usage habits have been considered as external factors. These factors have been investigated by examining data sets provided by sensors from 14 different smartphones. In this context, internal factors have been analyzed by implementing accuracy assessment processes for three different smartphone models, whereas external factors have been evaluated by analyzing the line charts which present timely pressure changes. Findings The study outlined that the sensor data at different sources have different characteristics due to the affecting parameters. Even if the pressure sensors are used under similar circumstances, data of these sensors have inconsistencies because of the sensor drift originated by internal factors. This study concluded that it was not applicable to provide a common correction coefficient for pressure sensor data of each smartphone model. Therefore, relative data (pressure differences) should be taken into consideration rather than absolute data (pressure values) when developing mobile applications using sensor data. Research limitations/implications Results of this study can be used as the guideline for developing mobile applications using MEMS pressure sensors. One of the main finding of this paper is promoting the use of relative data (pressure differences) rather than absolute data (pressure values) when developing mobile applications using smartphone-embedded sensor data. This significant result was proved by examinations applied with in the study and can be applied by future research studies. Originality/value Existing studies mostly evaluate the use of MEMS pressure sensor data obtained from limited number of smartphone models. As each smartphone model has a specific technology, factors affecting the sensor performances should be identified and analyzed precisely in terms of smartphone models for providing extensive results. In this study, five smartphone models were used fractionally. In this context, they were used for examining the common effects of the factors, and detailed accuracy assessments were applied by using two high-tech smartphones in the market.


Author(s):  
Neven Bulic ◽  
Livio Šušnjic

Purpose This paper aims to present a simulation concept and an experimental verification of a novel sensor design for the shaft position measurement based on the eddy current principle and the phase-shift measurement. The simulation method for the sensor characteristic determination is presented. Possible application of a new sensor type is theoretically presented, verified in simulation and compared with experimental results. Design/methodology/approach Sensor is based on the injection-locking phenomenon between coupled oscillators. Only one sensor per axis is used for position measurement. A pair of the sensing and reference oscillators in the sensor is electrically coupled via the coupling resistor. A change in the inductance for the eddy current sensor is simulated in the finite element method (FEM) software Flux and behavior of the sensor circuit is simulated in the SPICE simulator software LTSpice program. Finally, the simulation results are compared with the measurements conducted on the laboratory test rig. Findings A novelty in this approach is the usage of only one sensor per axis compared to the well-known differential measurement of the position that uses the opposite pair of the sensing oscillators in the same axis. A methodology for the sensor characteristic determination is presented and experimentally verified. Originality/value A new variation of a coupled-oscillator eddy current sensor design is introduced. A simulation approach for the characteristic determination of the sensors based on the weakly coupled oscillators and the injection-locking mechanism is presented.


2020 ◽  
Vol 37 (3) ◽  
pp. 147-153
Author(s):  
Zoheir Kordrostami ◽  
Kourosh Hassanli ◽  
Amir Akbarian

Purpose The purpose of this study is to find a new design that can increase the sensitivity of the sensor without sacrificing the linearity. A novel and very efficient method for increasing the sensitivity of MEMS pressure sensor has been proposed for the first time. Rather than perforation, we propose patterned thinning of the diaphragm so that specific regions on it are thinner. This method allows the diaphragm to deflect more in response with regard to the pressure. The best excavation depth has been calculated and a pressure sensor with an optimal pattern for thinned regions has been designed. Compared to the perforated diaphragm with the same pattern, larger output voltage is achieved for the proposed sensor. Unlike the perforations that have to be near the edges of the diaphragm, it is possible for the thin regions to be placed around the center of the diaphragm. This significantly increases the sensitivity of the sensor. In our designation, we have reached a 60 per cent thinning (of the diaphragm area) while perforations larger than 40 per cent degrade the operation of the sensor. The proposed method is applicable to other MEMS sensors and actuators and improves their ultimate performance. Design/methodology/approach Instead of perforating the diaphragm, we propose a patterned thinning scheme which improves the sensor performance. Findings By using thinned regions on the diaphragm rather than perforations, the sensitivity of the sensor was improved. The simulation results show that the proposed design provides larger membrane deflections and higher output voltages compared to the pressure sensors with a normal or perforated diaphragm. Originality/value The proposed MEMS piezoelectric pressure sensor for the first time takes advantage of thinned diaphragm with optimum pattern of thinned regions, larger outputs and larger sensitivity compared with the simple or perforated diaphragm pressure sensors.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guanzheng Wu ◽  
Siming Li ◽  
Jiayu Hu ◽  
Manchen Dong ◽  
Ke Dong ◽  
...  

Purpose This paper aims to study the working principle of the capacitive pressure sensor and explore the distribution of pressure acting on the surface of the capacitor. Herein, a kind of high sensitivity capacitive pressure sensor was prepared by overlaying carbon fibers (CFs) on the surfaces of the thermoplastic elastomer (TPE), the TPE with high elasticity is a dielectric elastomer for the sensor and the CFs with excellent electrical conductivity were designed as the conductor. Design/methodology/approach Due to the excellent mechanical properties and electrical conductivity of CFs, it was designed as the conductor layer for the TPE/CFs capacitive pressure sensor via laminating CFs on the surfaces of the columnar TPE. Then, a ‘#' type structure of the capacitive pressure sensor was designed and fabricated. Findings The ‘#' type of capacitive pressure sensor of TPE/CFs composite was obtained in high sensitivity with a gauge factor of 2.77. Furthermore, the change of gauge factor values of the sensor under 10 per cent of applied strains was repeated for 1,000 cycles, indicating its outstanding sensing stability. Moreover, the ‘#' type capacitive pressure sensor of TPE/CFs was consisted of several capacitor arrays via laminating CFs, which could detect the distribution of pressure. Research limitations/implications The TPE/CFs capacitive pressure sensor was easily fabricated with high sensitivity and quick responsiveness, which is desirably applied in wearable electronics, robots, medical devices, etc. Originality/value The outcome of this study will help to fabricate capacitive pressure sensors with high sensitivity and outstanding sensing stability.


2015 ◽  
Vol 22 (5) ◽  
pp. 773-790 ◽  
Author(s):  
Manik Chandra Das ◽  
Bijan Sarkar ◽  
Siddhartha Ray

Purpose – Technical education plays an important role in the development of a country in this age of knowledge economy. Indian technical education system is facing many opportunities and challenges, one of which is how to assess the performance of technical institutions based on multiple criteria. The purpose of this paper is to describe and illustrate an application of a structured approach to determine relative efficiency and ranking of a set of private engineering colleges under multi-criteria environment. Design/methodology/approach – To cater to the increasing need of technical manpower, a very large number of private engineering colleges have been established in the state of West Bengal of eastern India within a very short period. Uniform and acceptable quality of the graduates from many of these private engineering colleges is a concern today and therefore the need for performance evaluation and ranking of these colleges is paramount. For the proposed framework a comparatively new multiple criteria decision-making tool, multiple objective optimization on the basis of simple ratio analysis (MOOSRA) is applied for performance evaluation of eight private engineering colleges taking into account some selected criteria. The subjective weights of the criteria are determined using fuzzy analytic hierarchy process (AHP). Findings – For the analysis, the required data have been provided by the management of the colleges for the academic year of 2011-2012. Based on request of the management identities of these institutes are not disclosed. The institutes are considered as anonymous institute and coded as A, B, C, D, E, F, G and H, respectively. The result of the study reveals that E is the best and the ranking the authors get is in the order of E > F > A > H > D > C > G > B. The result shows that composite performance scores of institutions A, E and F are above the mean performance score value. Therefore these three institutions can be considered as the benchmark or peer group for the remaining five institutions which lie below the mean line of the performance score value. Originality/value – This paper provides a comprehensive yet detailed methodology for performance evaluation of academic institutions. The novelty in the approach is that fuzzy AHP and MOOSRA are being used as a benchmarking technique in a simple methodology which is generic in nature. It is one of the few studies that evaluate the performance of technical institutions in India.


2013 ◽  
Vol 562-565 ◽  
pp. 394-397
Author(s):  
Li Dong Du ◽  
Zhan Zhao ◽  
Li Xiao ◽  
Meng Ying Zhang ◽  
Zhen Fang

In this paper, a SOI-MEMS (silicon on insulator- micro electro mechanical system) pizeoresistive atmosphere pressure sensor is presented using anodic bonding. Differently from the prevailing fabrication process of silicon piezoresistive pressure sensor: the device layer monocrystalline of SOI silicon wafer is used as the strain gauge with a simple deep etching process; and the SiO2 layer of SOI silicon wafer as the insulator between strain gauge and substrate. The whole fabrication processes of the designed sensor are very simple, and can reduce the cost of sensor. The Pressure-Voltage characteristic test results suggest a precision within 0.14% in linear fitting. It is shown that the temperature coefficient is 2718ppm/°C from the Typical temperature curve of the pressure sensors.


Sign in / Sign up

Export Citation Format

Share Document