scholarly journals Primary stabilizing effect of interbody fusion devices for the cervical spine: an in vitro comparison between three different cage types and bone cement

2000 ◽  
Vol 9 (5) ◽  
pp. 410-416 ◽  
Author(s):  
H.-J. Wilke ◽  
A. Kettler ◽  
L. Claes
2001 ◽  
Author(s):  
Denis J. DiAngelo ◽  
Weiqiang Liu ◽  
Kristine M. Olney ◽  
Kevin T. Foley

Abstract Cervical spondylosis is the most common degenerative disorder affecting the cervical spine and is often treated surgically to prevent further neurological deterioration. However, clinical experience has shown that anterior cervical plating does not prevent construct failure in multi-level cervical corpectomy (Vaccaro et al., 1998). We have previously shown that anterior cervical plating reverses the load transfer through multi-level strut-grafts and may promote pistoning of these grafts (DiAngelo et al., 2000). The design of the anterior cervical plate (ACP) may contribute to this phenomenon. The purpose of this study was to compare the graft loading mechanics of two different anterior cervical plating systems; one with a constrained plate-screw interface versus another with a semi-constrained, translational plate-screw interface.


Author(s):  
M. C Korinth ◽  
T Hero ◽  
A. H Mahnken ◽  
C Ragoß ◽  
K Scherer

AbstractZur Beurteilung des radiologischen, biomechanischen und histologischen Einwachsverhaltens neuer Materialien, Implantate und Cages für die zervikale interkorporelle Fusion, bieten sich Tiermodelle und hier insbesondere das Schafs-Halswirbelsäulenmodell an.In biomechanischen In-vitro-Versuchen an humanen Kadaver-Halswirbelsäulen wurden erste Erfahrungen hinsichtlich Primärstabilität eines Cage aus einer neuartigen, porösen TiOZur entsprechenden In-vivo-Beurteilung fusionierten wir 10 Schafs-Halswirbelsäulen in den Höhen C2/3 und C4/5 jeweils mit PMMA und einem Ecopore-Keramik-Cage und führten nativradiologische, sowie computertomographische Verlaufsuntersuchungen direkt post-operativ und alle 4 Wochen in den folgenden 2 bzw. 4 Monaten durch. Neben der Etablierung des Tiermodells, wurden die radiologischen Veränderungen im Verlauf und die Fusion der operierten Segmente analysiert. Darüberhinaus wurden Messungen der entsprechenden Bandscheibenfachhöhen (DSH) und Intervertebralwinkel (IVA) durchgeführt und verglichen.Nach Einbringen der Implantate in die Bandscheibenfächer nahm zunächst in beiden Gruppen die mittlere Bandscheibenfachhöhe und der Intervertebralwinkel zu (34,8%; 53,9%). In den folgenden Monaten verringerte sich die Bandscheibenfachhöhe nicht signifikant, deutlicher nach Ecopore-Fusion als nach PMMA-Interposition bis auf Werte unterhalb der Ausgangswerte. Ebenso nahm der Intervertebralwinkel im postoperativen Verlauf, deutlicher in der Ecopore-Gruppe als in der PMMA-Gruppe, ab (p < 0,05). Diese Veränderungen im Sinne einer Einsinterung der Implantate, konnte in den radiologischen Verlaufskontrollen morphologisch bestätigt werden. Die radiologisch beurteilbare Fusion, d.h. solide knöcherne Überbauung des operierten Segments, war nach Implantation eines Ecopore-Cage ausgeprägter (83%) als nach PMMA-Interposition (50%) (nicht statistisch signifikant).In diesem ersten Teil unserer In-vivo-Untersuchungen zu dem Einsatz des neuartigen Cage-Materials wurde die Anwendung im Spondylodesemodell der Schafs-Halswirbelsäule aufgezeigt. Es zeigten sich radiologische Unterschiede, in Bezug auf die ausgeprägtere Einsinterung des Ecopore-Cage und die deutlichere, nachweisbare Fusion des mit dem neuen Material operierten Segments. In dem ersten Teil dieser Studie wurden die radiologischen Veränderungen der fusionierten Segmente über mehrere Monate dargestellt und morphologisch analysiert, bevor die biomechanischen Analysen und Vergleiche in einem weiteren Teil präsentiert werden sollen. Animals are becoming more and more common as in vitro and in vivo models for the human spine. Especially the sheep cervical spine is stated to be of good comparability and usefulness in the evaluation of in vivo radiological, biomechanical and histological behaviour of new bone replacement materials, implants and cages for cervical spine interbody fusion.In preceding biomechanical in vitro examination human cervical spine specimens were tested after fusion with either a cubical stand-alone interbody fusion cage manufactured from a new porous TiOImmediately after placement of both implants in the disc spaces the mean DSH and IVA increased (34.8% and 53.9%, respectively). During the following months DSH decreased to a greater extent in the Ecopore-segments than in the PMMA-segments, even to a value below the initial value (p > 0,05). Similarly, the IVA decreased in both groups in the postoperative time lapse, but more distinct in the Ecopore-segments (p < 0,05). These changes in terms of a subsidence of the implants, were confirmed morphologically in the radiological examination in the course. The radiologically evaluated fusion, i.e. bony bridging of the operated segments, was more pronounced after implantation of an Ecopore-cage (83%), than after PMMA interposition (50%), but did not gain statistical significance.In this first in vivo examination of our new porous ceramic bone replacement material we showed its application in the spondylodesis model of the sheep cervical spine. Distinct radiological changes regarding evident subsidence and detectable fusion of the segments, operated on with the new biomaterial, were seen. We demonstrated the radiological changes of the fused segments during several months and analysed them morphologically, before the biomechanical evaluation will be presented in a subsequent publication.


Spine ◽  
2005 ◽  
Vol 30 (22) ◽  
pp. E665-E670 ◽  
Author(s):  
Annette Kettler ◽  
Werner Schmoelz ◽  
Erich Kast ◽  
Maria Gottwald ◽  
Lutz Claes ◽  
...  

2001 ◽  
Vol 94 (1) ◽  
pp. 97-107 ◽  
Author(s):  
Annette Kettler ◽  
Hans-Joachim Wilke ◽  
Lutz Claes

Object. The aim of this in vitro study was to determine the influence of simulated postoperative neck movements on the stabilizing effect and subsidence of four different anterior cervical interbody fusion devices. Emphasis was placed on the relation between subsidence and spinal stability. Methods. The flexibility of 24 human cervical spine specimens was tested before and directly after being stabilized with a WING, BAK/C, AcroMed I/F cage, or with bone cement in standard flexibility tests under 50 N axial preload. Thereafter, 700 pure moment loading cycles (± 2 Nm) were applied in randomized directions to simulate physiological neck movements. Additional flexibility tests in combination with measurements of the subsidence depth were conducted after 50, 100, 200, 300, 500, and 700 loading cycles. In all four groups, simulated postoperative neck movements caused an increase of the range of motion (ROM) ranging from 0.4 to 3.1° and of the neutral zone from 0.1 to 4.2°. This increase in flexibility was most distinct in extension followed by flexion, lateral bending, and axial rotation. After cyclic loading, ROM tended to be lower in the group fitted with AcroMed cages (3.3° in right lateral bending, 3.5° in left axial rotation, 7.8° in flexion, 8.3° in extension) and in the group in which bone cement was applied (5.4°, 2.5°, 7.4°, and 8.8°, respectively) than in those fixed with the WING (6.3°, 5.4°, 9.7°, and 6.9°, respectively) and BAK cages (6.2°, 4.5°, 10.2°, and 11.6°, respectively). Conclusions. Simulated repeated neck movements not only caused an increase of the flexibility but also subsidence of the implants into the adjacent vertebrae. The relation between flexibility increase and subsidence seemed to depend on the implant design: subsiding BAK/C cages partially supported stability whereas subsiding WING cages and AcroMed cages did not.


2015 ◽  
Vol 24 (S3) ◽  
pp. 372-377 ◽  
Author(s):  
Robert Tatsumi ◽  
Yu-Po Lee ◽  
Kaveh Khajavi ◽  
William Taylor ◽  
Foster Chen ◽  
...  

2007 ◽  
Vol 78 (3) ◽  
pp. 404-411 ◽  
Author(s):  
Graham F Dall ◽  
Philip M S Simpson ◽  
Steffen J Breusch

Sign in / Sign up

Export Citation Format

Share Document