Cracking Processes in Rock-Like Material Containing a Single Flaw Under Uniaxial Compression: A Numerical Study Based on Parallel Bonded-Particle Model Approach

Author(s):  
Xiao-Ping Zhang ◽  
Louis Ngai Yuen Wong
2015 ◽  
Vol 1119 ◽  
pp. 683-687
Author(s):  
Jia Shen Tian ◽  
Cheng Zhao

Numerical investigations on failure process of rock-like materials with a single flaw were carried out under uniaxial compression based on the fracture analysis software: Fracture Analysis Code in Two Dimensions (FRANC2D/L). The change of the displacements and stress distribution were recorded around the crack. Comparative analysis is made among samples containing different angled flaw, which has great influnce on the process of crack initiation and propagetion, and with the increase of flaw angle from 30° to 75°, peak strength of the specimen increases linearly, basically. Which are in good agreement with those of experiments.


Author(s):  
James F. Hazzard ◽  
David S. Collins ◽  
William S. Pettitt ◽  
R. Paul Young

2017 ◽  
Author(s):  
Agnieszka Herman

Abstract. In this paper, a coupled sea ice–wave model is developed and used to analyze the variability of wave-induced stress and breaking in sea ice. The sea ice module is a discrete-element bonded-particle model, in which ice is represented as cuboid "grains" floating on the water surface that can be connected to their neighbors by elastic "joints". The joints may break if instantaneous stresses acting on them exceed their strength. The wave part is based on an open-source version of the Non-Hydrostatic WAVE model (NHWAVE). The two parts are coupled with proper boundary conditions for pressure and velocity, exchanged at every time step. In the present version, the model operates in two dimensions (one vertical and one horizontal) and is suitable for simulating compact ice in which heave and pitch motion dominates over surge. In a series of simulations with varying sea ice properties and incoming wavelength it is shown that wave-induced stress reaches maximum values at a certain distance from the ice edge. The value of maximum stress depends on both ice properties and characteristics of incoming waves, but, crucially for ice breaking, the location at which the maximum occurs does not change with the incoming wavelength. Consequently, both regular and random (Jonswap spectrum) waves break the ice into floes with almost identical sizes. The width of the zone of broken ice depends on ice strength and wave attenuation rates in the ice.


Sign in / Sign up

Export Citation Format

Share Document