moment tensors
Recently Published Documents


TOTAL DOCUMENTS

270
(FIVE YEARS 88)

H-INDEX

33
(FIVE YEARS 4)

Author(s):  
Eduardo Huesca-Pérez ◽  
Edahí Gutierrez-Reyes ◽  
Luis Quintanar

ABSTRACT The Gulf of California (GoC) is a complex tectonic boundary that has been instrumented in the past several decades to record broadband seismograms. This volume of data has allowed us to study several source parameters systematically. Before, only a few source parameters of earthquakes greater than magnitude five had been studied in the GoC area. We re-examined the focal mechanisms of several earthquakes in the southern GoC that occurred over the last 20 yr using local–regional distance broadband seismograms. These focal mechanisms were then used as input data to retrieve the time–space history of the rupture for each earthquake. This work contributes to the study of 25 rupture-process models computed with the method proposed by Yagi et al. (1999). To investigate more about the nature of the seismicity in the GoC, we also calculated the non-double-couple component of moment tensors for 45 earthquakes. Previous studies (e.g., Ortega et al., 2013, 2016) have shown that non-double-couple components from moment tensors in this region are associated with complex faulting, suggesting that oblique faults or several parallel faults are interacting simultaneously. Our results show that, at least for moderate earthquakes (5 < M < 6), rupture processes in the GoC show a complex interaction between fault systems. It is revealed on the important contribution of non-double-couple component obtained in the full moment tensor analysis.


Author(s):  
A. Filippova ◽  
N. Gileva

We calculated seismic moment tensors in a double-couple approximation (focal mechanisms, scalar seismic moments, and moment magnitudes) and hypocentral depths for twenty earthquakes with Mw≥4.2 that occurred in the Baikal region and Transbaikalia in 2015. The initial data were amplitude spectra of Rayleigh and Love waves obtained from their records at the broadband seismic stations of the IRIS and the DK networks and first-motion polarities of body waves recorded at regional distances. A combination of the normal fault and strike-slip movements dominate in the sources of the major part of the study earthquakes. For the strongest of the considered seismic events (Mw≥4.6), the subvertical compression and subhorizontal tension in the SE-NW direction prevail, i.e. the tension is perpendicular to the main structures of the Baikal rift zone. The seismic events with Mw<4.6 are characterized by a more scattered orientation of compression and tension axis that could be caused, for instance, by stress redistribution in small-scale crustal blocks after stronger earthquakes. The obtained results are of great value for issues concerned with seismic hazard assessment and the development of geodynamical models of the lithosphere evolution of the study region.


Author(s):  
V. Melnikova ◽  
N. Gileva ◽  
A. Filippova ◽  
Ya. Radziminovich ◽  
E. Kobeleva

We consider the character of the seismic process in the Baikal and Transbaikalia regions in 2015. 36430 earthquakes with KR≥3 were recorded by seismic stations of permanent and temporary networks during the year due to the sharp increase of a number of seismic events at the north-east of the study region in the area of the large Muyakan seismic activation. 53 earthquakes were felt in the cities, towns and local settlements with an intensity not exceeding 6. The largest Tallaysk earthquake (KR=14.0, Mw=5.1) occurred at the North-Muya Ridge and was followed by few aftershocks. Focal mechanisms were determined for 118 seismic events from P-wave first-arrival polarities and based on seismic moment tensors inverted from the surface wave data. It has been found, that normal faults are realized in the sources of 49 % of earthquakes with the obtained focal mechanisms.


2021 ◽  
Author(s):  
◽  
Elizabeth de Joux Robertson

<p>The aim of this project is to enable accurate earthquake magnitudes (moment magnitude, MW) to be calculated routinely and in near real-time for New Zealand earthquakes. This would be done by inversion of waveform data to obtain seismic moment tensors. Seismic moment tensors also provide information on fault-type. I use a well-established seismic moment tensor inversion method, the Time-Domain [seismic] Moment Tensor Inversion algorithm (TDMT_INVC) and apply it to GeoNet broadband waveform data to generate moment tensor solutions for New Zealand earthquakes. Some modifications to this software were made. A velocity model can now be automatically used to calculate Green's functions without having a pseudolayer boundary at the source depth. Green's functions can be calculated for multiple depths in a single step, and data are detrended and a suitable data window is selected. The seismic moment tensor solution that has either the maximum variance reduction or the maximum double-couple component is automatically selected for each depth. Seismic moment tensors were calculated for 24 New Zealand earthquakes from 2000 to 2005. The Global CMT project has calculated CMT solutions for 22 of these, and the Global CMT project solutions are compared to the solutions obtained in this project to test the accuracy of the solutions obtained using the TDMT_INVC code. The moment magnitude values are close to the Global CMT values for all earthquakes. The focal mechanisms could only be determined for a few of the earthquakes studied. The value of the moment magnitude appears to be less sensitive to the velocity model and earthquake location (epicentre and depth) than the focal mechanism. Distinguishing legitimate seismic signal from background seismic noise is likely to be the biggest problem in routine inversions.</p>


2021 ◽  
Author(s):  
◽  
Elizabeth de Joux Robertson

<p>The aim of this project is to enable accurate earthquake magnitudes (moment magnitude, MW) to be calculated routinely and in near real-time for New Zealand earthquakes. This would be done by inversion of waveform data to obtain seismic moment tensors. Seismic moment tensors also provide information on fault-type. I use a well-established seismic moment tensor inversion method, the Time-Domain [seismic] Moment Tensor Inversion algorithm (TDMT_INVC) and apply it to GeoNet broadband waveform data to generate moment tensor solutions for New Zealand earthquakes. Some modifications to this software were made. A velocity model can now be automatically used to calculate Green's functions without having a pseudolayer boundary at the source depth. Green's functions can be calculated for multiple depths in a single step, and data are detrended and a suitable data window is selected. The seismic moment tensor solution that has either the maximum variance reduction or the maximum double-couple component is automatically selected for each depth. Seismic moment tensors were calculated for 24 New Zealand earthquakes from 2000 to 2005. The Global CMT project has calculated CMT solutions for 22 of these, and the Global CMT project solutions are compared to the solutions obtained in this project to test the accuracy of the solutions obtained using the TDMT_INVC code. The moment magnitude values are close to the Global CMT values for all earthquakes. The focal mechanisms could only be determined for a few of the earthquakes studied. The value of the moment magnitude appears to be less sensitive to the velocity model and earthquake location (epicentre and depth) than the focal mechanism. Distinguishing legitimate seismic signal from background seismic noise is likely to be the biggest problem in routine inversions.</p>


Author(s):  
Rafael Abreu ◽  
Stephanie Durand

AbstractSeismic events produced by block rotations about vertical axis occur in many geodynamic contexts. In this study, we show that these rotations can be accounted for using the proper theory, namely micropolar theory, and a new asymmetric moment tensor can be derived. We then apply this new theory to the Kaikōura earthquake (2016/11/14), Mw 7.8, one of the most complex earthquakes ever recorded with modern instrumental techniques. Using advanced numerical techniques, we compute synthetic seismograms including a full asymmetric moment tensor and we show that it induces measurable differences in the waveforms proving that seismic data can record the effects of the block rotations observed in the field. Therefore, the theory developed in this work provides a full framework for future dynamic source inversions of asymmetric moment tensors.


2021 ◽  
Author(s):  
Václav Vavryčuk ◽  
Petra Adamová ◽  
Jana Doubravová ◽  
Josef Horálek

Abstract. We present a unique catalogue of full moment tensors (MTs) of microearthquakes that occurred in West Bohemia, Czech Republic, in the period from 2008 to 2018. The catalogue is exceptional in several aspects: (1) it represents an extraordinary extensive dataset of more than 5.000 MTs, (2) it covers a long period of seismicity in the studied area, during which several prominent earthquake swarms took place, (3) the locations and retrieved MTs of microearthquakes are of a high accuracy. Additionally, we provide three-component records at the West Bohemia (WEBNET) seismic stations, the velocity model in the region, and the technical specification of the stations. The dataset is ideal for being utilized by a large community of researchers for various seismological purposes, e.g., for studies of (1) the migration of foci and the spatiotemporal evolution of seismicity, (2) redistribution of stress during periods of intense seismicity, (3) the interaction of faults, (4) the Coulomb stress along the faults and local stress anomalies connected to fault irregularities, (5) diffusivity of fluids along the activated faults, or (6) the time-dependent seismic risk due to the migration of seismicity in the region. In addition, the dataset is optimum for developing and testing new inversions for MTs and for tectonic stress. Since most of the earthquakes are non-shear, the dataset can contribute to studies of non-double-couple components of MTs and their relation to shear-tensile fracturing and/or seismic anisotropy in the focal zone.


2021 ◽  
Vol 873 (1) ◽  
pp. 012022
Author(s):  
A W Baskara ◽  
D P Sahara ◽  
A D Nugraha ◽  
A Muhari ◽  
A A Rusdin ◽  
...  

Abstract The Ambon Mw 6.5 earthquake on September 26th, 2019, had contributed to give severe damages and significantly increased seismicity around Ambon Island and surrounding areas. Mainshock was followed by aftershocks with spatial distribution added to the impact of destructions in this region. We investigated aftershocks sequences to reveal the effect of mainshock toward the change in the in-situ stress field, including the possibility of the existing faults reactivation and the generation of aftershocks. We inferred centroid moment tensor (CMT) for significant aftershock events with Mw more than 4.0 using waveform data recorded from October 18th to December 15th, 2019. The aftershock focal mechanism was determined using the Bayesian full-waveform inversion code ISOLA-Obspy. This approach provides the uncertainty of the CMT model parameters. From ten CMT solution we had inferred in three seismic clusters, we found that majority of events have a strike-slip mechanism. Four events located on the south of the N-S trendings have a dextral strike-slip fault type, reflected the rupture of the mainshocks fault plane. Three events in the cluster of Ambon Island are dextral strike-slip, confirming the presence of the fault reactivation. Meanwhile, three CMT solutions in the north show the dextral strike-slip faulting and may belong to the mainshock main fault, connected with the cluster in the south.


Author(s):  
Andreas Steinberg ◽  
Hannes Vasyura‐Bathke ◽  
Peter Gaebler ◽  
Matthias Ohrnberger ◽  
Lars Ceranna

Sign in / Sign up

Export Citation Format

Share Document