Global bifurcation for water waves with capillary effects and constant vorticity

2013 ◽  
Vol 174 (3) ◽  
pp. 459-475 ◽  
Author(s):  
Bogdan-Vasile Matioc
2013 ◽  
Vol 73 (4) ◽  
pp. 1582-1595 ◽  
Author(s):  
Calin Iulian Martin ◽  
Bogdan-Vasile Matioc

2011 ◽  
Vol 689 ◽  
pp. 129-148 ◽  
Author(s):  
A. C. L. Ashton ◽  
A. S. Fokas

AbstractThe classical equations of irrotational water waves have recently been reformulated as a system of two equations, one of which is an explicit non-local equation for the wave height and for the velocity potential evaluated on the free surface. Here, in the two-dimensional case: (a) we generalize the relevant formulation to the case of constant vorticity, as well as to the case where the free surface is described by a multivalued function; (b) in the case of travelling waves we derive an upper bound for the free surface; (c) in the case of constant vorticity we construct a sequence of nearly Hamiltonian systems which provide an approximation in the asymptotic limit of certain physical small parameters. In particular, the explicit dependence of the vorticity on the coefficients of the Korteweg–de Vries equation is clarified.


Author(s):  
M. D. Groves ◽  
E. Wahlén

We present an existence and stability theory for gravity–capillary solitary waves with constant vorticity on the surface of a body of water of finite depth. Exploiting a rotational version of the classical variational principle, we prove the existence of a minimizer of the wave energy𝓗subject to the constraint𝓘= 2µ, where𝓘is the wave momentum and 0 <µ≪ 1. Since𝓗and𝓘are both conserved quantities, a standard argument asserts the stability of the setDµof minimizers: solutions starting nearDµremain close toDµin a suitably defined energy space over their interval of existence. In the applied mathematics literature solitary water waves of the present kind are described by solutions of a Korteweg–de Vries equation (for strong surface tension) or a nonlinear Schrödinger equation (for weak surface tension). We show that the waves detected by our variational method converge (after an appropriate rescaling) to solutions of the appropriate model equation asµ↓ 0.


2014 ◽  
Vol 256 (8) ◽  
pp. 3086-3114 ◽  
Author(s):  
Calin Iulian Martin ◽  
Bogdan-Vasile Matioc

Author(s):  
Konstantinos Kalimeris

We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity. This article is part of the theme issue ‘Nonlinear water waves’.


Sign in / Sign up

Export Citation Format

Share Document