water depth
Recently Published Documents


TOTAL DOCUMENTS

2732
(FIVE YEARS 775)

H-INDEX

63
(FIVE YEARS 10)

2022 ◽  
Vol 8 ◽  
Author(s):  
Peter A. U. Staehr ◽  
Karsten Dahl ◽  
Helle Buur ◽  
Cordula Göke ◽  
Rumakanta Sapkota ◽  
...  

We investigated the use of eDNA metabarcoding for supplementing traditional diver-based monitoring of biodiversity of marine boulder reefs within the photic zone. The applied sampling design made it possible to evaluate the usefulness of eDNA monitoring as a supplement for traditional monitoring. Specifically, this study aimed to (1) assess the local influence of boulder reefs on biodiversity across the North Sea to Baltic Sea transition zone and (2) investigate the importance of environmental gradients for patterns in community structure. On samples collected during August 2020, we compared the composition and abundance of species associated with nine reefs, representing an environmental gradient of salinity (16–33 psu), water temperature (16–21°C) and water depth (6–29 m). At each reef site, water was sampled near the bottom just above the reef and on average 2.6 km upstream and downstream (location) and sequenced with metabarcoding using COI, 18S and 12S rDNA primers. eDNA identified 400 species, diver-based observations identified 184 with an overlap of 70 species (12%) and 81 genera (18%). While eDNA identified many infaunal species, it did not detect several macroalgal species which dominated in the diver-based observations. Multivariate analysis of eDNA and diver-based community structure both distinguished between reef communities, with a significant match between patterns observed by the two methods (r = 0.37, p = 0.02). Furthermore, the eDNA approach made it possible to identify significant differences in species composition between upstream, above-reef and downstream locations, suggesting that eDNA leaves a local footprint in benthic habitats. Patterns in both eDNA and diver-based species composition and richness were significantly related to geographical distance, salinity, water temperature and water depth. Despite of low detection of macroalgae, the eDNA sampling provided a substantial supplement to traditional diver-based monitoring of biodiversity around benthic hotspots in the Danish marine waters and therefore we recommend to add eDNA methods to conventional monitoring programs in the future.


2022 ◽  
pp. SP523-2021-85
Author(s):  
Ángel Puga-Bernabéu ◽  
Juan Carlos Braga ◽  
Julio Aguirre ◽  
José Manuel Martín

AbstractThe approximately 350 m-thick stratigraphic succession of the Zagra Strait records an important oceanographic phase of basin interconnection between the Atlantic Ocean (Guadalquivir Basin) and the Mediterranean Sea through the Betic Cordillera (southern Spain) during the early Tortonian. The Zagra Strait developed as a narrow structurally-controlled marine corridor. The sedimentary dynamics of the Zagra Strait was interpreted from the sedimentological features observed in six sections at well-exposed outcrops. Large-scale (>10 m high) compound and compound-dune complexes moved parallel to the strait margins under strong tidal currents generated by tidal amplification at the strait entrance and exit. Dune distribution can be divided in three sectors with different palaeocurrent migration, lithological and topographical characteristics. The northern and central sectors were separated by a deep depression (>75 m water depth) where tidal currents were weaker and dunes were not generated. The southern sector records a relative decrease in current strength compared with the northern and central sectors, and a significant increase in the bioclastic content in the sediment. Terrigenous content generally increases towards the strait margins, and reciprocally, carbonates towards its axis. The closure of the Zagra Strait resulted from tectonic uplift of that part of the Betic Cordillera before the late Tortonian.


2022 ◽  
Vol 8 ◽  
Author(s):  
Charlotte Kleint ◽  
Rebecca Zitoun ◽  
René Neuholz ◽  
Maren Walter ◽  
Bernhard Schnetger ◽  
...  

Hydrothermal vents are a source of many trace metals to the oceans. Compared to mid-ocean ridges, hydrothermal vent systems at arcs occur in shallower water depth and are much more diverse in fluid composition, resulting in highly variable water column trace metal concentrations. However, only few studies have focused on trace metal dynamics in hydrothermal plumes at volcanic arcs. During R/V Sonne cruise SO253 in 2016/2017, hydrothermal plumes from two hydrothermally active submarine volcanoes along the Kermadec arc in the Southwest Pacific Ocean were sampled: (1) Macauley, a magmatic dominated vent site located in water depths between 300 and 680 m, and (2) Brothers, located between 1,200 and 1,600 m water depth, where hydrothermalism influenced by water rock interactions and magmatically influenced vent sites occur near each other. Surface currents estimated from satellite-altimeter derived currents and direct measurements at the sites using lowered acoustic Doppler current profilers indicate the oceanic regime is dominated by mesoscale eddies. At both volcanoes, results indicated strong plumes of dissolved trace metals, notably Mn, Fe, Co, Ni, Cu, Zn, Cd, La, and Pb, some of which are essential micronutrients. Dissolved metal concentrations commonly decreased with distance from the vents, as to be expected, however, certain element/Fe ratios increased, suggesting a higher solubility of these elements and/or their stronger stabilization (e.g., for Zn compared to Fe). Our data indicate that at the magmatically influenced Macauley and Brothers cone sites, the transport of trace metals is strongly controlled by sulfide nanoparticles, while at the Brothers NW caldera wall site iron oxyhydroxides seem to dominate the trace metal transport over sulfides. Solution stabilization of trace metals by organic complexation appears to compete with particle adsorption processes. As well as extending the generally sparse data set for hydrothermal plumes at volcanic arc systems, our study presents the first data on several dissolved trace metals in the Macauley system, and extends the existing plume dataset of Brothers volcano. Our data further indicate that chemical signatures and processes at arc volcanoes are highly diverse, even on small scales.


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Masanao Shinohara ◽  
Shin’ichi Sakai ◽  
Tomomi Okada ◽  
Hiroshi Sato ◽  
Yusuke Yamashita ◽  
...  

AbstractAn earthquake with a magnitude of 6.7 occurred in the Japan Sea off Yamagata on June 18, 2019. The mainshock had a source mechanism of reverse-fault type with a compression axis of WNW–ESE direction. Since the source area is positioned in a marine area, seafloor seismic observation is indispensable for obtaining the precise distribution of the aftershocks. The source area has a water depth of less than 100 m, and fishing activity is high. It is difficult to perform aftershock observation using ordinary free-fall pop-up type ocean bottom seismometers (OBSs). We developed a simple anchored-buoy type OBS for shallow water depths and performed the seafloor observation using this. The seafloor seismic unit had three-component seismometers and a hydrophone. Two orthogonal tiltmeters and an azimuth meter monitored the attitude of the package. For seismic observation at shallow water depth, we concluded that an anchored-buoy system would have the advantage of avoiding accidents. Our anchored-buoy OBS was based on a system used in fisheries. We deployed three anchored-buoy OBSs in the source region where the water depth was approximately 80 m on July 5, 2019, and two of the OBSs were recovered on July 13, 2019. Temporary land seismic stations with a three-component seismometer were also installed. The arrival times of P- and S-waves were read from the records of the OBSs and land stations, and we located hypocenters with correction for travel time. A preliminary location was performed using absolute travel time and final hypocenters were obtained using the double-difference method. The aftershocks were distributed at a depth range of 2.5 km to 10 km and along a plane dipping to the southeast. The plane formed by the aftershocks is consistent with the focal mechanism of the mainshock. The activity region of the aftershocks was positioned in the upper part of the upper crust. Focal mechanisms were estimated using the polarity of the first arrivals. Although many aftershocks had a reverse-fault focal mechanism similar to the focal solution of the mainshock, normal-fault type and strike–slip fault type focal mechanisms were also estimated. Graphical Abstract


2022 ◽  
Vol 10 (1) ◽  
pp. 50
Author(s):  
Miyoung Yun ◽  
Jinah Kim ◽  
Kideok Do

Estimating wave-breaking indexes such as wave height and water depth is essential to understanding the location and scale of the breaking wave. Therefore, numerous wave-flume laboratory experiments have been conducted to develop empirical wave-breaking formulas. However, the nonlinearity between the parameters has not been fully incorporated into the empirical equations. Thus, this study proposes a multilayer neural network utilizing the nonlinear activation function and backpropagation to extract nonlinear relationships. Existing laboratory experiment data for the monochromatic regular wave are used to train the proposed network. Specifically, the bottom slope, deep-water wave height and wave period are plugged in as the input values that simultaneously estimate the breaking-wave height and wave-breaking location. Typical empirical equations employ deep-water wave height and length as input variables to predict the breaking-wave height and water depth. A newly proposed model directly utilizes breaking-wave height and water depth without nondimensionalization. Thus, the applicability can be significantly improved. The estimated wave-breaking index is statistically verified using the bias, root-mean-square errors, and Pearson correlation coefficient. The performance of the proposed model is better than existing breaking-wave-index formulas as well as having robust applicability to laboratory experiment conditions, such as wave condition, bottom slope, and experimental scale.


2022 ◽  
Vol 964 (1) ◽  
pp. 012021
Author(s):  
Walid Bouchenafa ◽  
Trong Dang-Vu ◽  
Huyen Xuan Dang-Vu

Abstract Urban agglomerations face the risk of overflowing rivers due to intense urbanization in flood-prone areas and the climate change effects. Despite the important protective measures deployed to reduce the fluvial flooding risk, additional efforts are still needed. This work aims to propose a new complementary non-structural protection measure, used to reduce the river flooding risk. The study is part of the NABRAPOL (NEBRASKA POLYMER) project, which aims to improve knowledge of the drag reduction effect by adding polymers in open-channel flows. The addition of polymers, even in limited concentrations, allows high friction to decrease with the typical Manning coefficient reduced up to 45%. An application case on a real watercourse is presented in this article. Two measurement campaigns are carried out on a river along 30 km. Experimental devices are deployed, and non-intrusive hydraulic measuring instruments are installed at the study field. Surface velocities are evaluated by the Large-Scale Particle Image Velocimetry (LSPIV) technique, and water depth is measured using ultrasonic radar sensors over the river. Measurement results show that the addition of 20 ppm of polymers in the flows results in a marked drag reduction by decreasing the water depth to 18% of its initial depth. The drag reduction technique by addition of small concentrations of polymers can be considered as a new and effective method to reinforce the measures already deployed in the flood risk management strategy since it allows the water depth to be decreased thus avoid overflowing rivers in the extreme flooding event.


Sign in / Sign up

Export Citation Format

Share Document