finite water depth
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Z Kok ◽  
J T Duffy ◽  
S Chai ◽  
Y Jin

The demand to increase port throughput has driven container ships to travel relatively fast in shallow water whilst avoiding grounding and hence, there is need for more accurate high-speed squat predictions. A study has been undertaken to determine the most suitable method to predict container ship squat when travelling at relatively high speeds (Frh ≥ 0.5) in finite water depth (1.1 ≤ h/T ≤ 1.3). The accuracy of two novel self-propelled URANS CFD squat model are compared with that of readily available empirical squat prediction formulae. Comparison of the CFD and empirical predictions with benchmark data demonstrates that for very low water depth (h/T < 1.14) and when Frh < 0.46; Barass II (1979), ICORELS (1980), and Millward’s (1992) formulae have the best correlation with benchmark data for all cases investigated. However, at relatively high speeds (Frh ≥ 0.5) which is achievable in deeper waters (h/T ≥ 1.14), most of the empirical formulae severely underestimated squat (7-49%) whereas the quasi-static CFD model presented has the best correlation. The changes in wave patterns and effective wake fraction with respect to h/T are also presented.


Author(s):  
Ting Cui ◽  
Arun Kamath ◽  
Weizhi Wang ◽  
Lihao Yuan ◽  
Duanfeng Han ◽  
...  

Abstract Accuracy estimation of wave loading on cylinders in a pile group under different impact scenarios is essential for both the structural safety and cost of coastal and offshore structures. Differing from the interaction of waves with a single cylinder, less attention has been paid to pile groups under different arrangements. Numerical simulations of interactions between plunging breaking waves and pile group in finite water depth are performed using the two-phase flow model in REEF3D, an open-source computational fluid dynamics program to investigate the wave loads and flow kinematics characteristics. The Reynolds-averaged Navier-Stokes equation with the two equation k − ω turbulence model is adopted to resolve the numerical wave tank. The model is validated by comparing the numerical wave forces and free surface elevation with measurements from experiments. The computational results show fairly good agreement with experimental data. Four cases are simulated with different relative distances, numbers of cylinders and arrangements. Results show that the wave forces on cylinders in the pile group are effected by the relative distance between cylinders. The staggered arrangement has a significant influence on the wave forces on the first and second cylinder. The interaction inside a pile group mostly happens between the neighboring cylinders.


2021 ◽  
Author(s):  
Wenjie Wang ◽  
Zhiliang Gao

Abstract For numerical simulation of structure-wave interaction, the wave generation with high accuracy is prime to analyze the wave loads and motions of the structure. Based on the fifth-order Stokes theory, a two-dimensional viscous wave flume, which was modeled using the commercial CFD solver ANSYS-FLUENT, was applied to the generation and propagation of regular waves in finite water depth. With the user-defined function provided by the solver, the momentum source term and boundary condition, which are used for the wave generation and dissipation, were developed to ensure the accuracy of wave simulation with large steepness. In addition, the wave flume was separated into two regions, which are governed by the laminar model and turbulent model, respectively. The separation of laminar and turbulent regions can alleviate the side effect of turbulence on the accuracy of wave generation. In order to validate the present method, the regular wave propagating with different steepness in finite water depth were simulated. The numerical results were in good agreement with the theoretical ones. The study showed that the present method was effective for the simulation of Stokes wave in finite water depth, especially effective to improve the numerical accuracy in case of large wave steepness.


Author(s):  
Olivier Kimmoun ◽  
H.C Hsu ◽  
Amin Chabchoub

Several field observations have reported the formation of rogue waves in coastal zones, see Chien et al. (2002) for an example in Taiwanese sea. The mechanisms that lead to the occurrence of rogue waves in finite water depth to shallow water are not well understood yet under the conjecture of modulation instability. Indeed, this theory for uni-directional waves shows that when kh is lower than a threshold of 1.363 in homogeneous water depth conditions, the wave train becomes stable to side-band perturbations. Then if the wave train is stable, the appearance of rogue waves is not possible within this linear stability framework. One explanation may come from the complex wave transformation mechanisms in variable bathymetry, especially, for cases of steep slopes or near the edge between a steep slope and a gentle slope as it is the case of the continental shelf. Very few laboratory experiments have been so far addressing the influence of the bathymetry on extreme wave occurrence (Baldock and Swan (1996), Kashima et al. (2012), Ma et al. (2015)).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/a5M4PS-Lo4Q


Author(s):  
Zuorui Lyu ◽  
Hiroaki Kashima ◽  
Nobuhito Mori

In recent years, freak wave/rouge wave has become an important problem in science and engineering. Modulational instability is considered to be an important factor leading to freak wave in the wave evolution of deep water, and Janssen (2003) defined Benjamin-Feir index (BFI) to reflect it. Mori and Janssen (2006) gave the occurrence probability of freak waves based on a weakly non-Gaussian theory, and distribution of wave height is determined by skewness and kurtosis of surface elevation to a considerable extent in deep water. According to observational record, freak wave has not only been found in deep water in the ocean, but also been observed in shallow water and coastal areas. In the process of water wave entering continental shelf, water depth is changing with mild slope after a long distance propagation. This study focus on investigating how water depth affect skewness and kurtosis in the high order nonlinear wave evolution from deep water to finite water depth in two-dimension.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/a8LiJvXWRrw


Sign in / Sign up

Export Citation Format

Share Document