Extended JKR theory on adhesive contact of coated spheres

2019 ◽  
Vol 230 (12) ◽  
pp. 4213-4233
Author(s):  
Vinh Phu Nguyen ◽  
Seung Tae Choi
Author(s):  
K. L. Johnson ◽  
J. A. Greenwood

The so-called JKR theory of adhesion between elastic spheres in contact (Johnson, Kendall & Roberts 1971, Sperling 1964) has been widely used in micro-tribology. In this paper the theory is extended to solids of general shape and curvature. It is assumed that the area of contact is elliptical which turns out to be approximately true, though the eccentricity is different from that for non-adhesive contact. Closed form expressions are found for the variation with load of contact radius and displacement, as a function of the ratio of principal relative curvatures of the two bodies in contact. The pull-off force is found to decrease with increasing eccentricity from its value of 3πΔγR/2 in the case of contact of spheres of radius R.


2015 ◽  
Vol 71 ◽  
pp. 244-254 ◽  
Author(s):  
Dongwoo Sohn ◽  
Hyung-Seok Won ◽  
Bongkyun Jang ◽  
Jae-Hyun Kim ◽  
Hak-Joo Lee ◽  
...  

Author(s):  
Feodor M. Borodich ◽  
Boris A. Galanov ◽  
Leon M. Keer ◽  
Maria M. Suarez-Alvarez

Atomic force microscopy (AFM) studies of living biological cells is one of main experimental tools that enable quantitative measurements of deformation of the cells and extraction of information about their structural and mechanical properties. However, proper modelling of AFM probing and related adhesive contact problems are of crucial importance for interpretation of experimental data. The Johnson–Kendall–Roberts (JKR) theory of adhesive contact has often been used as a basis for modelling of various phenomena including cell-cell interactions. However, strictly speaking the original JKR theory is valid only for contact of isotropic linearly elastic spheres, while the cell membranes are often prestressed. For the first time, effects caused by molecular adhesion for living cells are analytically studied taking into account the mechanical properties of cell membranes whose stiffness depends on the level of the tensile prestress. Another important question is how one can extract the work of adhesion between the probe and the cell. An extended version of the Borodich-Galanov method for non-direct extraction of elastic and adhesive properties of contacted materials is proposed to apply to experiments of cell probing. Evidently, the proposed models of adhesive contact for cells with prestressed membranes do not cover all types of biological cells because the structure and properties of the cells may vary considerably. However, the obtained results can be applied to many types of smooth cells and can be used to describe initial stages of contact and various other processes when effects of adhesion are of crucial importance. This article is part of a discussion meeting issue ‘A cracking approach to inventing new tough materials: fracture stranger than friction’.


2018 ◽  
Vol 24 (5) ◽  
pp. 1405-1424 ◽  
Author(s):  
Feodor M. Borodich ◽  
Boris A. Galanov ◽  
Nikolay V. Perepelkin ◽  
Danila A. Prikazchikov

Contact problems for a thin compressible elastic layer attached to a rigid support are studied. Assuming that the thickness of the layer is much less than the characteristic dimension of the contact area, a direct derivation of asymptotic relations for displacements and stress is presented. The proposed approach is compared with other published approaches. The cases are established when the leading-order approximation to the non-adhesive contact problems is equivalent to contact problem for a Winkler–Fuss elastic foundation. For this elastic foundation, the axisymmetric adhesive contact is studied in the framework of the Johnson–Kendall–Roberts (JKR) theory. The JKR approach has been generalized to the case of the punch shape being described by an arbitrary blunt axisymmetric indenter. Connections of the results obtained to problems of nanoindentation in the case that the indenter shape near the tip has some deviation from its nominal shape are discussed. For indenters whose shape is described by power-law functions, the explicit expressions are derived for the values of the pull-off force and for the corresponding critical contact radius.


2017 ◽  
Vol 50 (47) ◽  
pp. 475601 ◽  
Author(s):  
Yuyan Zhang ◽  
Xiaoli Wang ◽  
Qiaoan Tu ◽  
Jianjun Sun ◽  
Chenbo Ma

Sign in / Sign up

Export Citation Format

Share Document