jkr theory
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 69 (4) ◽  
Author(s):  
Valentin L. Popov

AbstractThe history of the following note is as follows. In 2003, I invited Kenneth Johnson to Berlin to give a talk on adhesion in a seminar at the Institute of Mechanics. His lecture on the topic "Mechanics of adhesion of spherical surfaces" took place on Monday, January 26, 2004. In the run-up to the seminar, Professor Johnson sent me a historical note dated November 18, 2003. In my opinion, this note, which was written in the form of a paper, may be of interest for experts in contact mechanics and tribology. Prof. Johnson did not publish it, so it remained a private communication. For a publication he might have made a revision and would possibly have credited other important contributions. But this we can only guess at, and therefore the note is published below in the form I received it from Kenneth L. Johnson, with only a few misprints corrected. It is interesting as a historical document from Ken Johnson, who played a key role in development of theory of adhesive contacts.


Author(s):  
Feodor M. Borodich ◽  
Boris A. Galanov ◽  
Leon M. Keer ◽  
Maria M. Suarez-Alvarez

Atomic force microscopy (AFM) studies of living biological cells is one of main experimental tools that enable quantitative measurements of deformation of the cells and extraction of information about their structural and mechanical properties. However, proper modelling of AFM probing and related adhesive contact problems are of crucial importance for interpretation of experimental data. The Johnson–Kendall–Roberts (JKR) theory of adhesive contact has often been used as a basis for modelling of various phenomena including cell-cell interactions. However, strictly speaking the original JKR theory is valid only for contact of isotropic linearly elastic spheres, while the cell membranes are often prestressed. For the first time, effects caused by molecular adhesion for living cells are analytically studied taking into account the mechanical properties of cell membranes whose stiffness depends on the level of the tensile prestress. Another important question is how one can extract the work of adhesion between the probe and the cell. An extended version of the Borodich-Galanov method for non-direct extraction of elastic and adhesive properties of contacted materials is proposed to apply to experiments of cell probing. Evidently, the proposed models of adhesive contact for cells with prestressed membranes do not cover all types of biological cells because the structure and properties of the cells may vary considerably. However, the obtained results can be applied to many types of smooth cells and can be used to describe initial stages of contact and various other processes when effects of adhesion are of crucial importance. This article is part of a discussion meeting issue ‘A cracking approach to inventing new tough materials: fracture stranger than friction’.


2019 ◽  
Vol 230 (12) ◽  
pp. 4213-4233
Author(s):  
Vinh Phu Nguyen ◽  
Seung Tae Choi

Author(s):  
C. Mathew Mate ◽  
Robert W. Carpick

As it more practical to measure the forces acting between two contacting surfaces then the energies of surfaces, this chapter covers those surface forces that are derived from surface energies. The starting point is Derjaguin’s approximation, which relates the energy between two flat surfaces to the force in other geometries: sphere/flat, sphere/sphere, and crossed cylinders. Next is a discussion of the surface forces in dry contacts with no liquid menisci around the contact points. This discussion covers the cases where adhesion causes significant deformation (JKR theory), where deformation is insignificant (DMT theory), and the cases in between. How surface roughness impacts adhesion is also discussed. The second half of this chapter deals with how liquid menisci around contacts contribute to adhesion forces, both for the sphere-on-flat geometry and for contacting rough surfaces.


2018 ◽  
Vol 24 (5) ◽  
pp. 1405-1424 ◽  
Author(s):  
Feodor M. Borodich ◽  
Boris A. Galanov ◽  
Nikolay V. Perepelkin ◽  
Danila A. Prikazchikov

Contact problems for a thin compressible elastic layer attached to a rigid support are studied. Assuming that the thickness of the layer is much less than the characteristic dimension of the contact area, a direct derivation of asymptotic relations for displacements and stress is presented. The proposed approach is compared with other published approaches. The cases are established when the leading-order approximation to the non-adhesive contact problems is equivalent to contact problem for a Winkler–Fuss elastic foundation. For this elastic foundation, the axisymmetric adhesive contact is studied in the framework of the Johnson–Kendall–Roberts (JKR) theory. The JKR approach has been generalized to the case of the punch shape being described by an arbitrary blunt axisymmetric indenter. Connections of the results obtained to problems of nanoindentation in the case that the indenter shape near the tip has some deviation from its nominal shape are discussed. For indenters whose shape is described by power-law functions, the explicit expressions are derived for the values of the pull-off force and for the corresponding critical contact radius.


2015 ◽  
Vol 71 ◽  
pp. 244-254 ◽  
Author(s):  
Dongwoo Sohn ◽  
Hyung-Seok Won ◽  
Bongkyun Jang ◽  
Jae-Hyun Kim ◽  
Hak-Joo Lee ◽  
...  

Langmuir ◽  
2013 ◽  
Vol 29 (48) ◽  
pp. 15006-15012 ◽  
Author(s):  
Saurabh Das ◽  
Sathya Chary ◽  
Jing Yu ◽  
John Tamelier ◽  
Kimberly L. Turner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document