adhesive properties
Recently Published Documents


TOTAL DOCUMENTS

1911
(FIVE YEARS 493)

H-INDEX

77
(FIVE YEARS 10)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 162
Author(s):  
Silvana Mattei ◽  
Luca Cozzarini ◽  
Chiara Bedon

Anti-shatter safety films (ASFs) are often used for structural glass applications. The goal is to improve the response of monolithic elements and prevent fragments from shattering. Thus, the main reason behind their use is the possibility to upgrade safety levels against the brittle failure of glass and minimize the number of possible injuries. However, the impact response of glass elements bonded with Polyethylene terephthalate (PET)-films and pressure sensitive adhesives (PSAs) still represents a research topic of open discussion. Major challenges derive from material characterization and asymmetrical variability under design loads and ageing. In particular, the measurement of interface mechanical characteristics for the adhesive layer in contact with glass is a primary parameter for the ASF choice optimization. For this reason, the present paper presents an experimental campaign aimed at calibrating some basic mechanical parameters that provide the characterization of constitutive models, such as tensile properties (yielding stress and Young modulus) for PET-film and adhesive properties for PSA (energy fracture and peel force). In doing so, both tensile tests for PET-films and peeling specimens are taken into account for a commercially available ASF, given that the peeling test protocol is one of most common methods for the definition of adhesion properties. Moreover, an extensive calibration of the Finite Element (FE) model is performed in order to conduct a parametric numerical analysis of ASF bonded glass solutions. Furthermore, a Kinloch approach typically used to determine the fracture energy of a given tape by considering a variable peel angle, is also adopted to compare the outcomes of calibration analyses and FE investigations on the tested specimens. Finally, a study of the effect of multiple aspects is also presented. The results of the experimental program and the following considerations confirm the rate dependence and ageing dependence in peel tests.


Author(s):  
Shervin Banitalebi ◽  
Nadia Skauli ◽  
Samuel Geiseler ◽  
Ole Petter Ottersen ◽  
Mahmood Amiry-Moghaddam

There is an urgent need to better understand the mechanisms involved in scar formation in brain. It is well known that astrocytes are critically engaged in this process. Here we analyze in-cipient scar formation one week after a discrete ischemic insult to the cerebral cortex. We show that the infarct border zone is characterized by pronounced changes in the organization and subcellular localization of the major astrocytic protein AQP4. Specifically there is a loss of AQP4 from astrocytic endfoot membranes that anchor astrocytes to pericapillary basal laminae and a disassembly of the supramolecular AQP4 complexes that normally abound in these membranes. This disassembly may be mechanistically coupled to a downregulation of the newly discovered AQP4 isoform AQP4ex. AQP4 has adhesive properties and is assumed to facilitate astrocyte mo-bility by permitting rapid volume changes at the leading edges of migrating astrocytes. Thus, the present findings provide new insight in the molecular basis of incipient scar formation.


2022 ◽  
Vol 23 (1) ◽  
pp. 513
Author(s):  
Odelia Levana ◽  
Soonkook Hong ◽  
Se Hyun Kim ◽  
Ji Hoon Jeong ◽  
Sung Sik Hur ◽  
...  

Adhesion of bacteria on biomedical implant surfaces is a prerequisite for biofilm formation, which may increase the chances of infection and chronic inflammation. In this study, we employed a novel electrospray-based technique to develop an antibacterial surface by efficiently depositing silica homogeneously onto polyethylene terephthalate (PET) film to achieve hydrophobic and anti-adhesive properties. We evaluated its potential application in inhibiting bacterial adhesion using both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria. These silica-deposited PET surfaces could provide hydrophobic surfaces with a water contact angle greater than 120° as well as increased surface roughness (root mean square roughness value of 82.50 ± 16.22 nm and average roughness value of 65.15 ± 15.26 nm) that could significantly reduce bacterial adhesion by approximately 66.30% and 64.09% for E. coli and S. aureus, respectively, compared with those on plain PET surfaces. Furthermore, we observed that silica-deposited PET surfaces showed no detrimental effects on cell viability in human dermal fibroblasts, as confirmed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide and live/dead assays. Taken together, such approaches that are easy to synthesize, cost effective, and efficient, and could provide innovative strategies for preventing bacterial adhesion on biomedical implant surfaces in the clinical setting.


2022 ◽  
Vol 21 ◽  
pp. e226262
Author(s):  
Ana Margarida dos Santos Melo ◽  
Anne Kaline Claudino Ribeiro ◽  
Diana Araújo Cunha ◽  
Nara Sousa Rodrigues ◽  
Vicente de Paulo Aragão Saboia ◽  
...  

Aim: To evaluate the impact of a dual-cured adhesive system on the in situ degree of conversion (DC), bond strength (BS) and failure mode (FM) of adhesive interfaces in dentin cavities restored with a bulk-fill resin composite. Methods: 4-mm-deep dentin cavities with a 3.1 C-factor were created in 68 bovine incisors (n = 17 per group). The lightcured (Scotchbond™ Universal) or the dual-cured (Adper™ Scotchbond™ Multi-purpose Plus) adhesive system was applied to the cavities, which were then restored with a bulkfill resin composite (Filtek™ Bulk Fill). In situ DC analysis was performed by means of micro Raman spectroscopy at the top and bottom interfaces. Push-out BS was measured in a universal testing machine after 24-h or 6-month water storage. FM was determined with a stereomicroscope. Data of in situ DC and BS were analyzed by two-way analysis of variance (ANOVA) and Tukey test (p<0.05), while the FM was analyzed descriptively. Results: The groups that received the dual-cured adhesive system showed statistically higher in situ DC and BS than those that received the light-cured adhesive system. Cohesive failure mode was the most frequent in all conditions. Conclusion: In situ DC and BS were influenced by the curing strategies of the adhesive systems with better performance of the dual-cured material.


Author(s):  
Mario Felipe GUTIÉRREZ ◽  
Luisa F. ALEGRÍA-ACEVEDO ◽  
Alejandra NÚÑEZ ◽  
Luján MÉNDEZ-BAUER ◽  
Romina ÑAUPARI-VILLASANTE ◽  
...  

Fermentation ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 19
Author(s):  
Najla Haddaji ◽  
Karima Ncib ◽  
Wael Bahia ◽  
Mouna Ghorbel ◽  
Nadia Leban ◽  
...  

Biosurfactants exhibit antioxidant, antibacterial, antifungal, and antiviral activities. They can be used as therapeutic agents and in the fight against infectious diseases. Moreover, the anti-adhesive properties against several pathogens point to the possibility that they might serve as an anti-adhesive coating agent for medical inserts and prevent nosocomial infections, without using synthetic substances. In this study, the antimicrobial, antibiofilm, cell surface hydrophobicity, and antioxidative activities of biosurfactant extracted from Bacillus sp., against four pathogenic strains of Staphylococcus spp. associated with vaginal infection, were studied. Our results have shown that the tested biosurfactant possesses a promising antioxidant potential, and an antibacterial potency against multidrug clinical isolates of Staphylococcus, with an inhibitory diameter ranging between 27 and 37 mm, and a bacterial growth inhibition at an MIC of 1 mg/ mL, obtained. The BioSa3 was highly effective on the biofilm formation of different tested pathogenic strains. Following their treatment by BioSa3, a significant decrease in bacterial attachment (p < 0.05) was justified by the reduction in the optical (from 0.709 to 0.111) following their treatment by BioSa3. The antibiofilm effect can be attributed to its ability to alter the membrane physiology of the tested pathogens to cause a significant decrease (p < 0.05) of over 50% of the surface hydrophobicity. Based on the obtained result of the bioactivities in the current study, BioSa3 is a good candidate in new therapeutics to better control multidrug-resistant bacteria and overcome bacterial biofilm-associated infections by protecting surfaces from microbial contamination.


2022 ◽  
Vol 92 (1) ◽  
pp. 161
Author(s):  
Я.А. Ляшенко ◽  
В.Л. Попов

Normal and tangential contact between a cylindrical steel indenter (wheel) and an elastomer with high adhesive properties is investigated. In the case of indentation in the normal direction, a computer simulation of the process of indentation and detachment was carried out, which shows good coincidence with an experiment. For the rolling friction mode, when analyzing the measured dependences of the tangential component of the contact force on the wheel displacement, the adhesive component of the friction force was determined. The situation of sliding friction, in which the rotation of the wheel was impossible, is considered. In the presence of adhesion, the sliding friction force is proportional to the contact area. In the absence of adhesion (the elastomer is covered with a chalk dust), a stick-slip friction mode is realized. The frequency and amplitude of stick-slip transitions depend on the indentation depth of the indenter into the elastomer.


Sign in / Sign up

Export Citation Format

Share Document