work of adhesion
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 93)

H-INDEX

38
(FIVE YEARS 4)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 174
Author(s):  
Maria-Cristina Anicescu ◽  
Cristina-Elena Dinu-Pîrvu ◽  
Marina-Theodora Talianu ◽  
Mihaela Violeta Ghica ◽  
Valentina Anuța ◽  
...  

The present study brings to attention a method to develop salicylic acid-based oil in water (O/W) microemulsions using a tensioactive system based on Tween 80, lecithin, and propylene glycol (PG), enriched with a vegetable oat oil phase and hyaluronic acid. The systems were physically characterized and the Quality by design approach was applied to optimize the attributes of microemulsions using Box–Behnken modeling, combined with response surface methodology. For this purpose, a 33 fractional factorial design was selected. The effect of independent variables namely X1: Tween 80/PG (%), X2: Lecithin (%), X3: Oil phase (%) was analyzed considering their impact upon the internal structure and evaluated parameters chosen as dependent factors: viscosity, mean droplet size, and work of adhesion. A high viscosity, a low droplet size, an adequate wettability—with a reduced mechanical work—and clarity were considered as desirable for the optimal systems. It was found that the optimal microemulsion which complied with the established conditions was based on: Tween 80/PG 40%, lecithin 0.3%, oat oil 2%, salicylic acid 0.5%, hyaluronic acid 1%, and water 56.2%. The response surface methodology was considered an appropriate tool to explain the impact of formulation factors on the physical properties of microemulsions, offering a complex pattern in the assessment of stability and quality attributes for the optimized formulation.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Miao Wang ◽  
Gang Liu ◽  
Min Huang ◽  
Yabo Fu ◽  
Changhong Lin ◽  
...  

Obtaining detailed information regarding the interfacial characteristics of metal/hexagonal-TMN composites is imperative for developing these materials with optimal mechanical properties. To this end, we systematically investigate the work of adhesion, fracture toughness, and interfacial stability of M/Cr2N and M/V2N interfaces using first-principles calculations. The orientation (0001) of hexagonal phases and (111) of fcc phases are selected as the interface orientations. Accordingly, we construct M/Cr2N interface models by considering 1N, 2N, and Cr terminations of Cr2N(0001), as well as two stacking sequences (top and hollow sites) for the 1N- and 2N-terminated interface models, respectively. The M/V2N interface models are constructed in the same way. The V-terminated Ni/V2N interface is demonstrated to provide a good combination of the work of adhesion, fracture toughness, and interfacial stability. Therefore, the Ni/V2N interface model can be regarded as the preferred configuration among the metal/hexagonal-TMN interface models considered. The present results offer a practical perspective for tailoring the interfaces in metal/hexagonal-TMN composite materials to obtain improved mechanical properties.


2021 ◽  
Author(s):  
Alpna Bisht ◽  
Chetna Hemrajani ◽  
Navneet Upadhyay ◽  
Prakriti Nidhi ◽  
Rajan Rolta ◽  
...  

Aim: Azelaic acid (AzA), a comedolytic, antibacterial, anti-inflammatory anti-melanogenic agent, prescribed against acne vulgaris is safe on skin. Its combination with another widely used anti-acne agent, tea tree oil (EO) whose delivery is limited by volatility, instability and lipophilicity constraints was attempted. Method: Solvent injection was used to prepare AzA-EO integrated ethosomes. Result: Ethosomes were transformed into carbopol hydrogel, which exhibited pseudo-plastic properties with appreciable firmness, work of shear, stickiness and work of adhesion. The hydrogel showed better permeation and retention characteristics vis-a-vis commercial formulation (AzidermTM), when evaluated in Wistar rat skin. Further, ethosome hydrogel composite was better tolerated with no side effects. Conclusion: The findings suggests that the aforementioned strategy could be a potential treatment used for acne management.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012042
Author(s):  
Kenny Yu ◽  
Ryan Enright ◽  
David McCloskey

Abstract A Monte Carlo method, implemented for quantifying confidence bounds on thermoreflectance (TR) measurements of interfacial thermal conductance G at solid-liquid interfaces modified with self-assembled monolayers (SAMs) is presented in this paper. Here we used 1-decanethiol (1DT) and 1H,1H,2H,2H-Perfluorodecanethiol (PFDT) SAMs to achieve two distinct work of adhesion. Using TR measurements in conjunction with Monte Carlo simulations, we determined G values to be 51 ± 7 MWm-2K-1, 58 ± 8 MWm-2K-1, and 72 ± 17 MWm-2K-1 for Au-PFDT-H2O, Au-1DT-H2O, and Au-H2O, respectively. Our results with the new confidence bounds position our experimental data on surfaces modified with SAMs comparable to literature. However, contrary to previous results shown in the literature, our data showed that a significant decrease in G can be seen for DI water on bare Au that was exposed in ambient for extended period. Our results indicate that G could be influenced by factors beyond a simple work of adhesion, an indication also seen from the work of Park et al.. To solidify this finding, further investigation is necessary to better understand G dependence on surface wettability.


Micron ◽  
2021 ◽  
Vol 150 ◽  
pp. 103139
Author(s):  
S.N. Pleskova ◽  
S.Z. Bobyk ◽  
R.N. Kriukov ◽  
E.N. Gorshkova ◽  
D.V. Novikov ◽  
...  

2021 ◽  
Vol 7 ◽  
Author(s):  
Yang Xu ◽  
Rongxin Zhou

In this study, a new adhesive contact model is built upon a boundary element method (BEM) model developed by Pohrt and Popov (2015). The strain energy release rate (SERR) on the edge of the bonding interface is evaluated using Virtual Crack Closure Technique (VCCT) which is shown to have better accuracy and weaker mesh-size dependency than the closed-form SERR formula derived by Pohrt and Popov. A composite delamination criterion is proposed for crack nucleation and propagation. Numerical results predicted by the present model are in good agreement with the analytical solutions of two classic problems, namely, the axisymmetric parabolic contact and the sinusoidal waviness contact in the plane strain condition. The model of Pohrt and Popov can achieve a similar accuracy for the axisymmetric parabolic contact where the mesh grid is non-conforming to the crack front. Once the conforming mesh grid is used, the accuracy of their model is significantly deteriorated, especially at high work of adhesion and high mesh density. In both BEM models, however, the crack nucleation is found to be mesh-dependent which may be solved by introducing an upper limit for the tensile normal traction.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1201
Author(s):  
Ling Jiang ◽  
Mengjie Wu ◽  
Qiuping Yu ◽  
Yuxia Shan ◽  
Yuyan Zhang

Microtransfer printing is a sophisticated technique for the heterogeneous integration of separately fabricated micro/nano-elements into functional systems by virtue of an elastomeric stamp. One important factor influencing the capability of this technique depends on the adhesion between the viscoelastic stamp and the transferred element. To provide theoretical guidance for the control of adhesion in the transfer printing process, a finite element model for the viscoelastic adhesive contact between a polydimethylsiloxane (PDMS) stamp and a spherical transferred element was established, in which the adhesive interaction was modeled by the Lennard-Jones surface force law. Effects of the unloading velocity, preload, and thermodynamic work of adhesion on the adhesion strength, characterized by the pull-off force, were examined for a loading-dwelling-unloading history. Simulation results showed that the unloading path deviated from the loading path due to the viscoelastic property of the PDMS stamp. The pull-off force increased with the unloading velocity, and the increasing ratio was large at first and then became low. Furthermore, the influence of the preload on increasing the pull-off force was more significant under larger unloading velocity than that under smaller unloading velocity. In addition, the pull-off force increased remarkably with the thermodynamic work of adhesion at a fixed maximum approach.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2591
Author(s):  
Noureddine Mahdhi ◽  
Norah Salem Alsaiari ◽  
Fatimah Mohammed Alzahrani ◽  
Khadijah Mohammedsaleh Katubi ◽  
Abdelfattah Amari ◽  
...  

The removal of heavy metals from drinking water has attracted great interest in water purification technology. In this study, a biocompatible Polyaniline (PANI) polymer filled with TiO2 and ZnO nanoparticles (NPs) is considered as an adsorbent of cadmium iodide from water. Theoretical investigation of the van der Waals (vdW) interactions deduced from the Hamaker constant calculated on the basis of Lifshitz theory was presented. It was found that the surface energy as well as the work of adhesion between water and PANI/NPs across air increases with an increasing volume fraction of the TiO2 and ZnO nanoparticles. Consequently, an increase in the Laplace pressure around the cavities/porosities was found, which leads to the enhancement of the specific contact surface between water and PANI/NPs. On the other hand, for the interactions between CdI2 particles and PANI/NPs surface across water, we show that the interactions are governed principally by the attractive London dispersion forces. The vdW energy and force increase proportionally with the augmentation of the volume fraction of nanoparticles and of the radius of the CdI2 particle. Particularly, the PANI/TiO2 has been proved to be a better candidate for adsorption of cadmium iodide from water than PANI/ZnO.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Emilia Irzmańska ◽  
Aleksandra Jastrzębska ◽  
Łukasz Kaczmarek ◽  
Agnieszka Adamus-Włodarczyk

Abstract The objective of the present work was to evaluate the surface wettability of commercially available polymeric protective gloves, as well as to determine the effects of their surface topography in conjunction with the glove material on the hydrophobic properties of the final products, together with surface free energy (SFE) and work of adhesion. The geometric structures imparted to the surface led to different levels of hydrophobicity and SFE. Most of the studied materials were characterized by good wettability properties. It was shown that a textured surface topography affects wettability. The highest SFE was found for nitrile butadiene rubber materials. All materials except for nitrile butadiene rubber exhibited good hydrophobic properties and relatively low work of adhesion.


Sign in / Sign up

Export Citation Format

Share Document