Satellite DNA probes of Alstroemeria longistaminea (Alstroemeriaceae) paint the heterochromatin and the B chromosome, reveal a G-like banding pattern, and point to a strong structural karyotype conservation

PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Tiago Ribeiro ◽  
Magdalena Vaio ◽  
Leonardo P. Félix ◽  
Marcelo Guerra
1991 ◽  
Vol 40 (1) ◽  
pp. 117-120 ◽  
Author(s):  
Avirachan T. Tharapel ◽  
Mazin B. Qumsiyeh ◽  
Paula R. Martens ◽  
Sugandhi A. Tharapel ◽  
James D. Dalton ◽  
...  

Caryologia ◽  
1988 ◽  
Vol 41 (3-4) ◽  
pp. 323-328 ◽  
Author(s):  
L. Vidal Rioja ◽  
T.G. de Fronza ◽  
R. Wainberg ◽  
N. Brum-Zorrilla ◽  
F. Wallace ◽  
...  

2000 ◽  
Vol 43 (2) ◽  
pp. 61-68 ◽  
Author(s):  
Halil Demirtas ◽  
Zühal Candemir ◽  
Nurhan Cücer ◽  
Nalan Imamoglu ◽  
Hamiyet Dönmez ◽  
...  

1991 ◽  
Vol 51 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Marion Kiechle-Schwarz ◽  
Hans-Joachim H. Deckr ◽  
Carol S. Berger ◽  
Heiner H. Fiebig ◽  
Avery A. Sandberg

Genome ◽  
1995 ◽  
Vol 38 (6) ◽  
pp. 1262-1270 ◽  
Author(s):  
Jun-Zhi Wei ◽  
William F. Campbell ◽  
Richard R.-C. Wang

Ten accessions of Russian wildrye, Psathyrostachys juncea (Fisch.) Nevski (2n = 2x = 14; NsNs), collected from different geographical regions were analyzed using the C-banding technique. C-banding pattern polymorphisms were observed at all levels, i.e., within homologous chromosome pairs of the same plant, among different individuals within accessions, between different accessions of the same geographic area, and among accessions of different origins. The seven homologous groups varied in the level of C-banding pattern polymorphism; chromosomes A, B, E, and F were more variable than chromosomes C, D, and G. The polymorphisms did not hamper chromosome identification in Ps. juncea, because each chromosome pair of the Ns genome had a different basic C-banding pattern and karyotypic character. A standard C-banded karyotype of Ps. juncea is proposed based on the overall karyotypes and C-bands in the 10 accessions. The C-bands on the Ns-genome chromosomes were designated according to the rules of nomenclature used in wheat. A deletion–translocation heterozygote of Russian wildrye was identified based on the karyotype and C-banding patterns established. The chromosome F pair consisted of a chromosome having the distal segment in the long arm deleted and a translocated chromosome having the distal segment of long arm replaced by the distal segment of the long arm of chromosome E. The chromosome E pair had a normal chromosome E and a translocated chromosome having the short arm and the proximal segment of the long arm of chromosome E and the distal segment of the long arm of chromosome F.Key words: Psathyrostachys juncea, karyotype, Giemsa C-banding, polymorphism, B chromosome.


1994 ◽  
Vol 107 (3) ◽  
pp. 703-708 ◽  
Author(s):  
M. Jamilena ◽  
C. Ruiz Rejon ◽  
M. Ruiz Rejon

The origin of the B chromosome of Crepis capillaris has been studied by using in situ hybridization with different DNA probes. Genomic in situ hybridization (GISH) with DNA from plants with and without Bs as probes indicates that the B chromosome has many DNA sequences in common with A chromosomes, showing no region rich in B-specific sequences. Six additional DNA probes were used to test the possible origin of this B from the standard NOR chromosome (chromosome 3). In the short arm of the NOR chromosome, we detected not only 18 S + 25 S rDNA, but also 5 S rDNA and a specific repetitive sequence from the NOR chromosome (pCcH32); in the heterochromatic bands of the long arm, we found two different repetitive sequences (pCcE9 and pCcD29). In the B chromosome, however, only the 18 S + 25 S rDNA and the telomeric sequences from Arabidopsis thaliana were observed. Our in situ hybridization data with telomeric repeats indicate that the two telomeres of the B are larger than those of the A chromosomes, confirming the isochromosomal nature of this B. Hybridizations of 18 S + 25 S rDNA and telomeric repeats to blots of DNA from plants with and without Bs reveal a high homology between A and B 18 S + 25 S rDNA genes, but some sequence dissimilarities between A and B telomeres. Taken as a whole, these data indicate that the entire B of C. capillaris, although possibly having originated from the standard genome, did not derive directly from the NOR chromosome.


Sign in / Sign up

Export Citation Format

Share Document