centromeric dna
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 7)

H-INDEX

36
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Riccardo Gamba ◽  
Giulia Mazzucco ◽  
Therese Wilhelm ◽  
Florian Chardon ◽  
Leonid Velikovsky ◽  
...  

Centromeres are key elements for chromosome segregation. Canonical centromeres are built over long-stretches of tandem repetitive arrays. Despite being quite abundant compared to other loci, centromere sequences overall still represent only 2 to 5% of the human genome, therefore studying their genetic and epigenetic features is a major challenge. Furthermore, sequencing of centromeric regions requires high coverage to fully analyze length and sequence variations, which can be extremely costly. To bypass these issues, we have developed a technique based on selective restriction digestion and size fractionation to enrich for centromeric DNA from human cells. Combining enzymes capable of cutting at high frequency throughout the genome, except within most human centromeres, with size-selection of >20 kb fragments resulted in over 25-fold enrichment in centromeric DNA. Sequencing of the enriched fractions revealed that up to 60% of the enriched material is made of centromeric DNA. This approach has great potential for making sequencing of centromeric DNA more affordable and efficient and for single DNA molecule studies.



mBio ◽  
2021 ◽  
Author(s):  
Alexander Lorenz ◽  
Nicolas Papon

2009 saw the first description of Candida auris , a yeast pathogen of humans. C. auris has since grown into a global problem in intensive care settings, where it causes systemic infections in patients with underlying health issues. Recent whole-genome sequencing has discerned five C. auris clades with distinct phenotypic features which display genomic divergence on a DNA sequence and a chromosome structure level.



protocols.io ◽  
2021 ◽  
Author(s):  
Nicolas Altemose ◽  
Annie Maslan ◽  
Owen Smith ◽  
Kousik Sundararajan ◽  
Rachel Brown ◽  
...  
Keyword(s):  


2021 ◽  
Vol 220 (8) ◽  
Author(s):  
Yun Quan ◽  
Stephen M. Hinshaw ◽  
Pang-Che Wang ◽  
Stephen C. Harrison ◽  
Huilin Zhou

The step-by-step process of chromosome segregation defines the stages of the cell cycle. In eukaryotes, signals controlling these steps converge upon the kinetochore, a multiprotein assembly that connects spindle microtubules to chromosomal centromeres. Kinetochores control and adapt to major chromosomal transactions, including replication of centromeric DNA, biorientation of sister centromeres on the metaphase spindle, and transit of sister chromatids into daughter cells during anaphase. Although the mechanisms that ensure tight microtubule coupling at anaphase are at least partly understood, kinetochore adaptations that support other cell cycle transitions are not. We report here a mechanism that enables regulated control of kinetochore sumoylation. A conserved surface of the Ctf3/CENP-I kinetochore protein provides a binding site for Ulp2, the nuclear enzyme that removes SUMO chains from modified substrates. Ctf3 mutations that disable Ulp2 recruitment cause elevated inner kinetochore sumoylation and defective chromosome segregation. The location of the site within the assembled kinetochore suggests coordination between sumoylation and other cell cycle–regulated processes.



PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009418
Author(s):  
Findley R. Finseth ◽  
Thomas C. Nelson ◽  
Lila Fishman

Centromeres are essential mediators of chromosomal segregation, but both centromeric DNA sequences and associated kinetochore proteins are paradoxically diverse across species. The selfish centromere model explains rapid evolution by both components via an arms-race scenario: centromeric DNA variants drive by distorting chromosomal transmission in female meiosis and attendant fitness costs select on interacting proteins to restore Mendelian inheritance. Although it is clear than centromeres can drive and that drive often carries costs, female meiotic drive has not been directly linked to selection on kinetochore proteins in any natural system. Here, we test the selfish model of centromere evolution in a yellow monkeyflower (Mimulus guttatus) population polymorphic for a costly driving centromere (D). We show that theDhaplotype is structurally and genetically distinct and swept to a high stable frequency within the past 1500 years. We use quantitative genetic mapping to demonstrate that context-dependence in the strength of drive (from near-100%Dtransmission in interspecific hybrids to near-Mendelian in within-population crosses) primarily reflects variable vulnerability of the non-driving competitor chromosomes, but also map an unlinked modifier of drive coincident with kinetochore protein Centromere-specific Histone 3 A (CenH3A). Finally, CenH3A exhibits a recent (<1000 years) selective sweep in our focal population, implicating local interactions withDin ongoing adaptive evolution of this kinetochore protein. Together, our results demonstrate an active co-evolutionary arms race between DNA and protein components of the meiotic machinery inMimulus, with important consequences for individual fitness and molecular divergence.



2021 ◽  
Author(s):  
Yun Quan ◽  
Stephen M. Hinshaw ◽  
Pang-Che Wang ◽  
Stephen C. Harrison ◽  
Huilin Zhou

ABSTRACTThe step-by-step process of chromosome segregation defines the stages of the cell division cycle. In eukaryotes, signaling pathways that control these steps converge upon the kinetochore, a multiprotein assembly that connects spindle microtubules to the centromere of each chromosome. Kinetochores control and adapt to major chromosomal transactions, including replication of centromeric DNA, biorientation of sister centromeres on the metaphase spindle, and transit of sister chromatids into daughter cells during anaphase. Although the mechanisms that ensure tight microtubule coupling at anaphase are at least partly understood, kinetochore adaptations that support other cell cycle transitions are not. We report here a mechanism that enables regulated control of kinetochore sumoylation. A conserved surface of the Ctf3/CENP-I kinetochore protein provides a binding site for the SUMO protease, Ulp2. Ctf3 mutations that disable Ulp2 recruitment cause elevated inner kinetochore sumoylation and defective chromosome segregation. The location of the site within the assembled kinetochore suggests coordination between sumoylation and other cell cycle-regulated processes.



Author(s):  
Zhongyang Lin ◽  
Karen Wing Yee Yuen

ABSTRACTCentromeric DNA sequences vary in different species, but share common characteristics, like high AT-content, repetitiveness, and low, but not no, transcriptional activity. Yet, neocentromeres can be found on non-centromeric, ectopic sequences, suggesting that centromeres can be established and maintained epigenetically. In contrast, canonical centromeric DNA sequences are more competent in de novo centromere formation on artificial chromosomes (ACs). To determine if specific DNA sequence features are preferred for new centromere formation, we injected different DNA sequences into the gonad of a holocentric model organism, Caenorhabditis elegans, to form ACs in embryos, and monitored mitotic AC segregation. We demonstrated that AT-rich sequences, but not repetitive sequences, accelerated de novo centromere formation on ACs. We also injected fragmented Saccharomyces cerevisiae genomic DNA to construct a less repetitive, more complex AC that can propagate through generations. By whole-genome sequencing and de novo assembly of AC sequences, we deduced that this AC was formed through non-homologous end joining. By CENP-AHCP-3 chromatin immunoprecipitation followed by sequencing (ChIP-seq), we found that CENP-AHCP-3 domain width on both the AC and endogenous chromosomes is positively correlated with AT-content. Besides, CENP-AHCP-3 binds to unexpressed gene loci or non-genic regions on the AC, consistent with the organization of endogenous holocentromeres.



Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 912 ◽  
Author(s):  
Scelfo ◽  
Fachinetti

In order to maintain cell and organism homeostasis, the genetic material has to be faithfully and equally inherited through cell divisions while preserving its integrity. Centromeres play an essential task in this process; they are special sites on chromosomes where kinetochores form on repetitive DNA sequences to enable accurate chromosome segregation. Recent evidence suggests that centromeric DNA sequences, and epigenetic regulation of centromeres, have important roles in centromere physiology. In particular, DNA methylation is abundant at the centromere, and aberrant DNA methylation, observed in certain tumors, has been correlated to aneuploidy and genomic instability. In this review, we evaluate past and current insights on the relationship between centromere function and the DNA methylation pattern of its underlying sequences.



Cell ◽  
2019 ◽  
Vol 178 (3) ◽  
pp. 624-639.e19 ◽  
Author(s):  
Glennis A. Logsdon ◽  
Craig W. Gambogi ◽  
Mikhail A. Liskovykh ◽  
Evelyne J. Barrey ◽  
Vladimir Larionov ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document