Validation of a distributed simulation of ship replenishment at sea with model tests

2018 ◽  
Vol 24 (4) ◽  
pp. 1209-1222 ◽  
Author(s):  
Kevin McTaggart ◽  
Pierre Roux de Reilhac ◽  
Loic Boudet ◽  
Shawn Oakey
2019 ◽  
Vol 161 (A1) ◽  

Navies from Canada, France, Germany, Italy, and the United Kingdom collaborated to develop and validate a distributed simulation of ship replenishment at sea. The simulation models the seaway, ship motions including hydrodynamic interaction effects between ships, and the transfer of a solid payload between ships using replenishment gear. The simulation was developed using the High Level Architecture (HLA), which facilitates sharing of data and synchronization of simulation time among software components on networked computers. Simulation results were validated using experimental data. The project demonstrated successful application of distributed simulation to complex naval platform systems. Lessons learned are shared for several areas, including seaway modelling, ship hydrodynamic interaction, and planning of model tests and sea trials for simulation validation.


2009 ◽  
Author(s):  
K. A. McTaggart ◽  
R. G. Langlois

Replenishment at sea is essential for sustainment of naval operations away from home ports. This paper describes physics-based simulation of the transfer of solid payloads between two ships. For a given operational scenario, the simulation can determine whether events such as breakage of replenishment gear or immersion of payload in the ocean will occur. The simulation includes detailed modelling of the replenishment gear and ship motions. Distributed simulation using the High Level Architecture facilitates time management and data exchange among simulation components.


Author(s):  
K McTaggart ◽  
D Tozzi ◽  
G Henry ◽  
F Valdenazzi ◽  
N Stuntz

Navies from Canada, France, Germany, Italy, and the United Kingdom collaborated to develop and validate a distributed simulation of ship replenishment at sea. The simulation models the seaway, ship motions including hydrodynamic interaction effects between ships, and the transfer of a solid payload between ships using replenishment gear. The simulation was developed using the High Level Architecture (HLA), which facilitates sharing of data and synchronization of simulation time among software components on networked computers. Simulation results were validated using experimental data. The project demonstrated successful application of distributed simulation to complex naval platform systems. Lessons learned are shared for several areas, including seaway modelling, ship hydrodynamic interaction, and planning of model tests and sea trials for simulation validation.


2008 ◽  
Vol 11 (-1) ◽  
pp. 188-201 ◽  
Author(s):  
Piotr Bogacz ◽  
Jarosława Kaczmarek ◽  
Danuta Leśniewska

Sign in / Sign up

Export Citation Format

Share Document