physical model tests
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 69)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mehdi Zadehmohamad ◽  
Jafar Bolouri Bazaz ◽  
Ramin Riahipour ◽  
Visar Farhangi

AbstractThe primary objective of this study is to investigate the benefits of adding tire rubber as an inclusion to backfill behind integral bridge abutments. In this respect, four physical model tests that enable cyclic loading of the backfill-abutment are conducted and evaluated. Each test consisted of 120 load cycles, and both the horizontal force applied to the top of the abutment wall and the pressures along the wall-backfill interface is measured. The primary variable in this study is the tire rubber content in the backfill soil behind the abutment. Results show adding tire rubber to the backfill would be beneficial for both pressure and settlement behind the abutment. According to results, adding tire rubber to soil decreases the equivalent peak lateral soil coefficient (Keq-peak) up to 55% and earth pressure coefficient ($${K}^{*}$$ K ∗ ) at upper parts of the abutment up to 59%. Moreover, the settlements of the soil behind the wall are decreased up to 60%.


2021 ◽  
Vol 930 (1) ◽  
pp. 012022
Author(s):  
R D Lufira’ ◽  
S Marsudi ◽  
S Agustien ◽  
A Khosin

Abstract Karangnongko Weir is planned to be located in the Bengawan Solo River (Lower Solo River Basin) about 15 km downstream of the confluence of Bengawan Solo River with the Madiun River in Ngelo Village, Margomulyo Sub-District, Bojonegoro Regency, and Ngrawoh Village in Kradenan Sub-District, Blora Regency. This study aims to determine the Depth and pattern of scouring in downstream energy dissipation through physical model tests based on initial planning. Downstream protection of energy dissipation in the original design model combines 50 m of riprap rocks and 50 m of riprap concrete for a total length of 100 m of protection. The maximum scouring pattern occurred at elevation + 17.64 m, where the scouring was 4.36 m deep, from the planned essential height of Height 00 m. Thus, the downstream protection of energy dissipation was extended to 112 m in riprap concrete blocks for the final design model. Scouring at the end of riprap was 3.04 m, the original elevation of the river bottom of + 22.00 m, down to + 18.96 m. It is concluded that the protection is effective in reducing scouring by up to 30.27%.


Geotechnics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 460-491
Author(s):  
Giovanni Ciardi ◽  
Giovanni Vannucchi ◽  
Claudia Madiai

Colloidal silica (CS) is a kind of nanomaterial used in soil/rock grouting techniques in different branches of civil engineering. Many studies have recently been performed to investigate the potential of CS in improving the mechanical behavior of cohesionless soils and mitigating the risk of seismic liquefaction in urbanized areas. CS grout is chemically and biologically inert and, when injected into a subsoil, it can form a silica gel and stabilize the desired soil layer, thus representing an attractive, environmentally friendly alternative to standard chemical grouting techniques. This paper firstly describes the characteristics of CS grout, the gelation process and the main features of the behavior of the pure gelled material. The grout delivery mechanisms through porous media are then explained, pointing out the crucial issues for practical application of CS grouting. All the grouting-induced effects on the soil behavior, which have been investigated by laboratory tests on small-sized soil elements, are reviewed, including the modifications to soil strength and stiffness under both static and seismic loading conditions, to soil compressibility and hydraulic conductivity. Published results from physical model tests and in situ applications are also presented. Finally, some aspects related to the mechanism of soil improvement are discussed. A critical discussion of each topic is presented, drawing particular attention to the controversial or not yet fully examined aspects to which future research on colloidal silica grouting should be directed.


Author(s):  
C.W.W. Ng ◽  
Haiming Liu ◽  
Clarence E. Choi ◽  
Aastha Bhatta ◽  
Min Zheng

A basal clearance is usually designed beneath barriers to enable sufficient discharge to minimise the maintenance work over service life. Current design guidelines for multiple barriers usually neglect the influence of basal clearance, resulting in either an over-conservative or a non-conservative design impact force acting on the subsequent barriers. In this study, physical model tests were carried out to investigate the effects of basal clearance height (Hc) beneath first barrier on the interaction between dry granular flow and dual rigid barriers. A new approach based on the hydrodynamic equation is proposed to estimate the impact force on the second barrier exerted by the basal discharge from the first barrier. This basal discharge can attenuate the impact force exerted on the second barrier by dissipating the kinetic energy of landing flow and apportioning the load contributions from discharge and overflow. For the first barrier with a barrier height HB1 that was twice of the flow depth h0, the impact force on the second barrier was governed by overflow when Hc/h0 ≤ 0.6 and was dominated by basal discharge when Hc/h0 ≥ 0.8. These two criteria provide a basis for optimising the impact forces for multiple-barrier systems with basal clearances.


2021 ◽  
pp. 106417
Author(s):  
Chih-Chung Chung ◽  
Chih-Ping Lin ◽  
Yin Jeh Ngui ◽  
Wen-Chin Lin ◽  
Chun-Shen Yang

2021 ◽  
Vol 9 (10) ◽  
pp. 1118
Author(s):  
Xiaofei Cheng ◽  
Jun Yang ◽  
Tiaojian Xu ◽  
Qianyuan Xu

In this study, physical model tests are used to investigate the effects of a varying number of wave and current parameters, the gap ratios between the pipeline and seabed, the spacing ratios between the two pipelines and the diameter ratios on the hydrodynamic coefficients of the large, small pipeline and pipeline system (bundle) in a piggyback configuration under the combined action of waves and current. The results show that, compared with the pure wave field, the existence of the steady current will lead to a decrease in hydrodynamic coefficients. In addition, the results indicate clear differences between the hydrodynamic coefficients of the large pipeline, small pipeline and piggyback pipeline system. The experimental results on hydrodynamic coefficients can be used as an important basis for the safety design of a submarine piggyback pipeline.


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 307
Author(s):  
Zhen Cui ◽  
Shi-Yang Pan ◽  
Yue-Jun Chen

The implementation of floating structures has increased with the construction of new sluices for flood control, and the hydrodynamic moment of a floating structure affects the safety and operation of that structure. Based on basic hydrodynamic theory, theoretical analysis and 121 physical model tests were conducted to study the relationships between the hydrodynamic moment and the influencing factors of floating structures, namely, the shape parameter, hydraulic conditions, and draft depth. Stepwise regression fitting based on the least squares method was performed to obtain a mathematical expression of the hydrodynamic moment, and the experimental results show that hydrodynamic factors significantly influence the hydrodynamic moment of such structures. The results predicted by the mathematical expression agree with the experimental results, and thus, the proposed expression can be used to comprehensively analyze and study the safety of a floating structure under the action of flow in finite water.


Sign in / Sign up

Export Citation Format

Share Document