Structure prediction, molecular simulations of RmlD from Mycobacterium tuberculosis, and interaction studies of Rhodanine derivatives for anti-tuberculosis activity

2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Harathi N ◽  
Sreenivasa Reddy P ◽  
Mounica Sura ◽  
Jayasimha Rayalu Daddam
Author(s):  
Lerato A Raphoko ◽  
Karabo Lekgau ◽  
Charity M Lebepe ◽  
Tlabo C Leboho ◽  
Thabe M Matsebatlela ◽  
...  

Polyhedron ◽  
2009 ◽  
Vol 28 (2) ◽  
pp. 398-406 ◽  
Author(s):  
Pedro I. da S. Maia ◽  
Fernando R. Pavan ◽  
Clarice Q.F. Leite ◽  
Sebastião S. Lemos ◽  
Gerimário F. de Sousa ◽  
...  

2012 ◽  
Vol 20 (10) ◽  
pp. 3255-3262 ◽  
Author(s):  
Michael S. Scherman ◽  
Elton J. North ◽  
Victoria Jones ◽  
Tamara N. Hess ◽  
Anna E. Grzegorzewicz ◽  
...  

2019 ◽  
Vol 201 (14) ◽  
Author(s):  
Kuan Hu ◽  
Ashley T. Jordan ◽  
Susan Zhang ◽  
Avantika Dhabaria ◽  
Amanda Kovach ◽  
...  

ABSTRACT We characterized an operon in Mycobacterium tuberculosis, Rv3679-Rv3680, in which each open reading frame is annotated to encode “anion transporter ATPase” homologues. Using structure prediction modeling, we found that Rv3679 and Rv3680 more closely resemble the guided entry of tail-anchored proteins 3 (Get3) chaperone in eukaryotes. Get3 delivers proteins into the membranes of the endoplasmic reticulum and is essential for the normal growth and physiology of some eukaryotes. We sought to characterize the structures of Rv3679 and Rv3680 and test if they have a role in M. tuberculosis pathogenesis. We solved crystal structures of the nucleotide-bound Rv3679-Rv3680 complex at 2.5 to 3.2 Å and show that while it has some similarities to Get3 and ArsA, there are notable differences, including that these proteins are unlikely to be involved in anion transport. Deletion of both genes did not reveal any conspicuous growth defects in vitro or in mice. Collectively, we identified a new class of proteins in bacteria with similarity to Get3 complexes, the functions of which remain to be determined. IMPORTANCE Numerous bacterial species encode proteins predicted to have similarity with Get3- and ArsA-type anion transporters. Our studies provide evidence that these proteins, which we named BagA and BagB, are unlikely to be involved in anion transport. In addition, BagA and BagB are conserved in all mycobacterial species, including the causative agent of leprosy, which has a highly decayed genome. This conservation suggests that BagAB constitutes a part of the core mycobacterial genome and is needed for some yet-to-be-determined part of the life cycle of these organisms.


2016 ◽  
Vol 192 ◽  
pp. 510-515 ◽  
Author(s):  
Lucas Noboru Fatori Trevizan ◽  
Kamilla Felipe do Nascimento ◽  
Joyce Alencar Santos ◽  
Candida Aparecida Leite Kassuya ◽  
Claudia Andrea Lima Cardoso ◽  
...  

2014 ◽  
Vol 109 (3) ◽  
pp. 324-329 ◽  
Author(s):  
Claudia Terencio Agostinho Pires ◽  
Mislaine Adriana Brenzan ◽  
Regiane Bertin de Lima Scodro ◽  
Diógenes Aparício Garcia Cortez ◽  
Luciana Dias Ghiraldi Lopes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document