bacterial species
Recently Published Documents


TOTAL DOCUMENTS

7017
(FIVE YEARS 4153)

H-INDEX

136
(FIVE YEARS 36)

2023 ◽  
Vol 83 ◽  
Author(s):  
M. Hassan ◽  
F. Shafique ◽  
H. Bhutta ◽  
K. Haq ◽  
T. Almansouri ◽  
...  

Abstract Oral diseases caused by various microorganisms are common around the world. Scientific research has now been focusing on novel medicines to overcome bacterial resistance and antibiotics side effects; therefore, the current study was designed to assess the efficacy of certain antibiotics, toothpaste, and medicinal plant extracts (Ajuga bracteosa and Curcuma longa) versus the bacterial pathogens isolated from the human oral cavity. A total of 130 samples were collected from Khyber Teaching Hospital Peshawar, Pakistan, among those 27 species isolated, and eight bacterial species were identified from the samples. Among all the bacterial species, Staphylococcus aureus (29.62%) and Proteus mirabilis (22.2%) were found to be more prevalent oral pathogens. In comparison, the least pervasive microbes were Proteus vulgaris, Shigella sonnei, Escherichia coli and Aeromonas hydrophila. The study also suggested that dental problems were more prevalent in males (41-50 years of age) than females. Among the eight antibiotics used in the study, the most promising results were shown by Foxicillin against A. hydrophila. The survey of TP1 revealed that it showed more potent antagonist activity against Proteus vulgaris as compared TP2 and TP3 that might be due to the high content of fluoride. The Curcuma longa showed more significant activity than Ajuga bracteosa (Stem, leaves and root) extracts. The data obtained through this study revealed that antibiotics were more effective for oral bacterial pathogens than toothpaste and plant extracts which showed moderate and low activity, respectively. Therefore, it is suggested that the active compounds in individual medicinal plants like Curcuma longa and Ajuga bracteosa could replace the antibiotics when used in daily routine as tooth cleansers or mouth rinses.


Author(s):  
Ajayi AO ◽  

This study shows the bactericidal effect of Electromagnetic Field on fruit juice microbes. Short shelf-life period of fruit juice caused by spoilage organisms has limiting factor for its economy value. The Eighteen microorganisms isolated from both fresh and spoilt fruit samples (Pineapple and Apple), and identified during the study include, twelve (12) bacteria and Six (6) fungi, out of which only the bacterial isolates were exposed to electromagnetic field of 0mG, 500mG, and 5000mG for thirty minutes. The bacteria species were Leuconostoc mesentroides, Bacillus species, Lactobacillus brevis, Microbacterium species, Clostridium species, Bacillus cereus, Acetobacter aceti, and Staphylococcus aureus. The Gram negative bacteria isolates were Erwinia carotovora, Erwinia ananas, and Proteus species. Exposure of the isolates to an electromagnetic field of 0mG, 500mG and 5000mG showed a decrease in some electromagnetic field magnitude. This study shows reduction in growth range among most bacterial species tested at 500mG electromagnetic radiation exposure, but the growth of many of these bacterial species were triggered at 5000mG electromagnetic radiation exposure. This may mean an initiation of: adaptation mechanism, growth mechanism in some microorganism, and sugar content of the fruit juice from which they are being isolated. The exposure of the bacteria to electromagnetic field elicited detectable responses therefore depends on the adaptation mechanism of each bacteria and sugar content of the fruit from which it is being isolated from. Thus, future research can be done to optimize the limits specified for target microbes that are strength and frequency of this EMF in diseases control.


2023 ◽  
Vol 83 ◽  
Author(s):  
M. Mushtaq ◽  
S. M. Bukhari ◽  
S. Ahmad ◽  
A. Khattak ◽  
M. B. Chattha ◽  
...  

Abstract There is a paucity of research conducted on microbial prevalence in pheasants. The microbiota of captive birds has zoonotic significance and must be characterize. Present study is therefore planned to assess the microbiota from oral, fecal and gut content of captive avian species. It will be helpful in characterization of harmful microbes. Different samples taken from oral, gut and feces of ring-necked pheasants (Phasianus colchicus), green pheasants (Phasianus versicolor), golden pheasant (Chrysolophus pictus) and silver pheasant (Lophura nycthemera). Samples were collected, diluted, and inoculated onto different agar plates (MacConkey, SS agar, MSA and nutrient agar) for cultivation of bacterial species. Colonies of E.coli, Staphylococcus spp. Brachyspira spp. and Campylobacter spp were observed based on colony morphology. Colony forming unit showed E. coli as frequently found bacteria in fecal, oral and gut contents of all the above pheasants. The overall significance difference was found among bacterial species of golden pheasants, green pheasant, ring-necked pheasant, and silver pheasants. It was concluded that E.coli is predominant isolated from heathy pheasants followed by Campylobacter, Staphylococcus and Brachyspira.


2023 ◽  
Vol 83 ◽  
Author(s):  
H. F. Rehman ◽  
A. Ashraf ◽  
S. Muzammil ◽  
M. H. Siddique ◽  
T. Ali

Abstract Zinc is an essential micronutrient that is required for optimum plant growth. It is present in soil in insoluble forms. Bacterial solubilization of soil unavailable form of Zn into available form, is an emerging approach to alleviate the Zn deficiency for plants and human beings. Zinc solubilizing bacteria (ZSB) could be a substitute for chemical Zn fertilizer. The present study aimed to isolate and characterize bacterial species from the contaminated soil and evaluate their Zn solubilizing potential. Zn resistant bacteria were isolated and evaluated for their MIC against Zn. Among the 13 isolated bacterial strains ZSB13 showed maximum MIC value upto 30mM/L. The bacterial strain with the highest resistance against Zn was selected for further analysis. Molecular characterization of ZSB13 was performed by 16S rRNA gene amplification which confirmed it as Pseudomonas oleovorans. Zn solubilization was determined through plate assay and broth medium. Four insoluble salts (zinc oxide (ZnO), zinc carbonate (ZnCO3), zinc sulphite (ZnS) and zinc phosphate (Zn3(PO4)2) were used for solubilization assay. Our results shows 11 mm clear halo zone on agar plates amended with ZnO. Likewise, ZSB13 showed significant release of Zn in broth amended with ZnCO3 (17 and 16.8 ppm) and ZnO (18.2 ppm). Furthermore, Zn resistance genes czcD was also enriched in ZSB13. In our study, bacterial strain comprising Zn solubilization potential has been isolated that could be further used for the growth enhancement of crops.


2024 ◽  
Vol 84 ◽  
Author(s):  
R. Ullah ◽  
A. W. Qureshi ◽  
A. Sajid ◽  
I. Khan ◽  
A. Ullah ◽  
...  

Abstract Fish is the main source of animal protein for human diet. The aim of this study was to find out prevalence of pathogenic bacteria of two selected economically important fish of Pakistan namely Mahseer (Tor putitora) and Silver carp (Hypophthalmichthys molitrix). Live fish samples from hatcheries and dead fish samples from different markets of study area were randomly collected. The fish samples were analyzed for isolation, identification and prevalence of bacteria. The isolated bacteria from study fish were identified through biochemical test and about 10 species of pathogenic bacteria were identified including the pathogenic bacteria to human and fish namely, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus iniae, Serratia spp. Citrobacter spp. Stenotrophomonas spp. Bacillus spp. and Salmonella spp. The bacterial percentage frequency of occurrence in Silver carp and Mahseer fish showed Pseudomonas aeruginosa 21.42%, Staphylococcus epidermidis 17.85%, Escherichia coli 11.90%, Staphylococcus aureus 9.52%, Citrobacter spp. 9.52%, Serratia spp. 8.33%, Streptococcus iniae 7.14%, Stenotrophomonas spp. 5.95%, Bacillus spp. 4.76% and Salmonella spp. 3.57%. The study revealed that Fish samples of Mahseer and Silver carp that were collected from markets have found more isolates (10 bacterial species) than did the fresh fish pond samples (03 bacterial species) of hatcheries. The occurrence of pathogenic bacteria in study fish showed risk factor for public health consumers.


Author(s):  
Laura Willen ◽  
Esra Ekinci ◽  
Lize Cuypers ◽  
Heidi Theeten ◽  
Stefanie Desmet

Streptococcus pneumoniae is an important and frequently carried respiratory pathogen that has the potential to cause serious invasive diseases, such as pneumonia, meningitis, and sepsis. Young children and older adults are among the most vulnerable to developing serious disease. With the arrival of the COVID-19 pandemic and the concomitant restrictive measures, invasive disease cases caused by respiratory bacterial species, including pneumococci, decreased substantially. Notably, the stringency of the containment measures as well as the visible reduction in the movement of people appeared to coincide with the drop in invasive disease cases. One could argue that wearing protective masks and adhering to social distancing guidelines to halt the spread of the SARS-CoV-2 virus, also led to a reduction in the person-to-person transmission of respiratory bacterial species. Although plausible, this conjecture is challenged by novel data obtained from our nasopharyngeal carriage study which is performed yearly in healthy daycare center attending children. A sustained and high pneumococcal carriage rate was observed amid periods of stringent restrictive measures. This finding prompts us to revisit the connection between nasopharyngeal colonization and invasion and invites us to look closer at the nasopharyngeal microbiome as a whole.


2022 ◽  
Author(s):  
Gaurav Kumar ◽  
Sharmistha Sinha

Bacterial microcompartments are substrate specific metabolic modules that are conditionally expressed in certain bacterial species. These all protein structures have size in the range of 100-150 nm and are formed by the self-assembly of thousands of protein subunits, all encoded by genes belonging to a single operon. The operon contains genes that encode for both enzymes and shell proteins. The shell proteins self-assemble to form the outer coat of the compartment and enzymes are encapsulated within. A perplexing question in MCP biology is to understand the mechanism which governs the formation of these small yet complex assemblages of proteins. In this work we use 1,2-propanediol utilization microcompartments (PduMCP) as a paradigm to identify the factors that drive the self-assembly of MCP proteins. We find that a major shell protein PduBB tend to self-assemble under macromolecular crowded environment and suitable ionic strength. Microscopic visualization and biophysical studies reveal phase separation to be the principle mechanism behind the self-association of shell protein in the presence of salts and macromolecular crowding. The shell protein PduBB interacts with the enzyme diol-dehydratase PduCDE and co-assemble into phase separated liquid droplets. The co-assembly of PduCDE and PduBB results in the enhancement of catalytic activity of the enzyme. A combination of spectroscopic and biochemical techniques shows the relevance of divalent cation Mg2+ in providing stability to intact PduMCP in vivo. Together our results suggest a combination of protein-protein interactions and phase separation guiding the self-assembly of Pdu shell protein and enzyme in solution phase.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 138
Author(s):  
Aniela Brodzikowska ◽  
Monika Ciechanowska ◽  
Michał Kopka ◽  
Albert Stachura ◽  
Paweł K. Włodarski

Lipopolysaccharide (LPS) is widely used for induction of inflammation in various human tissues, including dental pulp. The purpose of this study was to summarize current medical literature focusing on (1) cell types used by researchers to simulate dental pulp inflammation, (2) LPS variants utilized in experimental settings and how these choices affect the findings. Our study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We searched for studies reporting outcomes of lipopolysaccharide application on dental pulp cells in vitro using electronic databases: MEDLINE, Web of Science and Scopus. Having gathered data from 115 papers, we aimed to present all known effects LPS has on different cell types present in dental pulp. We focused on specific receptors and particles that are involved in molecular pathways. Our review provides an essential foundation for further research using in vitro models of pulpitis.


2022 ◽  
Author(s):  
Amy Switzer ◽  
Lynn Burchell ◽  
Panagiotis Mitsidis ◽  
Ramesh Wigneshweraraj

The canonical function of a bacterial sigma factor is to determine the gene specificity of the RNA polymerase (RNAP). In several diverse bacterial species, the sigma 54 factor uniquely confers distinct functional and regulatory properties on the RNAP. A hallmark feature of the sigma 54-RNAP is the obligatory requirement for an activator ATPase to allow transcription initiation. The genes that rely upon sigma 54 for their transcription have a wide range of different functions suggesting that the repertoire of functions performed by genes, directly or indirectly affected by sigma 54, is not yet exhaustive. By comparing the non-planktonic growth properties of prototypical enteropathogenic, uropathogenic and non-pathogenic Escherichia coli strains devoid of sigma 54, we uncovered sigma 54 as a determinant of homogenous non-planktonic growth specifically in the uropathogenic strain. Notably, bacteria devoid of individual activator ATPases of the sigma 54-RNAP do not phenocopy the sigma 54 mutant strain. It seems that sigma 54's role as a determinant of homogenous non-planktonic growth represents a putative non-canonical function of sigma 54 in regulating genetic information flow.


Author(s):  
Javad Nezhadi ◽  
Sepehr Taghizadeh ◽  
Ehsaneh Khodadadi ◽  
Mehdi Yousefi ◽  
Khudaverdi Ganbarov ◽  
...  

Abstract: The dramatically increasing levels of antibiotic resistance are being seen worldwide, and is a significant threat to public health. Antibiotic and drug resistance is seen in various bacterial species. Antibiotic resistance is associated with increased morbidity and mortality and increased treatment costs. Antisense-relevant technologies include the utilization of oligonucleotide molecules to interfere with gene expression, as a new technique for the treatment of antibiotic-resistant bacteria has been proposed antisense agents or nucleic acids analogs with antibacterial properties, which are commonly very short and their size almost 10-20 bases and can be hinted to peptide nucleic acids (PNAs), phosphorodiamidate morpholino oligomers (PPMOs) and locked nucleic acids (LNAs). This review highlights that PNAs, PPMOs, and LNAs target the genes that cause destroy the gene and inhibit the growth of bacteria. These results open a new perspective for therapeutic intervention. In future studies, it is necessary to examine different aspects of antisense agents, for example, safety, toxicity, and pharmacokinetic properties of antisense agents to be employed in clinical treatment.


Sign in / Sign up

Export Citation Format

Share Document