Solving the Split Feasibility Problem and the Fixed Point Problem of Left Bregman Firmly Nonexpansive Mappings via the Dynamical Step Sizes in Banach Spaces

Author(s):  
N. Pholasa ◽  
K. Kankam ◽  
P. Cholamjiak
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tongxin Xu ◽  
Luoyi Shi

AbstractIn this paper, we propose a new iterative algorithm for solving the multiple-sets split feasibility problem (MSSFP for short) and the split equality fixed point problem (SEFPP for short) with firmly quasi-nonexpansive operators or nonexpansive operators in real Hilbert spaces. Under mild conditions, we prove strong convergence theorems for the algorithm by using the projection method and the properties of projection operators. The result improves and extends the corresponding ones announced by some others in the earlier and recent literature.


Optimization ◽  
2019 ◽  
Vol 68 (5) ◽  
pp. 955-980 ◽  
Author(s):  
Suthep Suantai ◽  
Uamporn Witthayarat ◽  
Yekini Shehu ◽  
Prasit Cholamjiak

2020 ◽  
Vol 36 (1) ◽  
pp. 147-157
Author(s):  
XIAOLI FANG ◽  
TAE-HWA KIM ◽  
YAQIN WANG

In this paper, we consider a split equality fixed point problem for asymptotically quasi-pseudo contractive operators which includes split feasibility problem, split equality problem, split fixed point problem etc, as special cases. Furthermore we propose a new algorithm for solving the split equality fixed point problem, and prove a weak and strong convergence theorem. The results obtained in this paper generalize and improve the recent ones announced by many others.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Meixia Li ◽  
Xueling Zhou ◽  
Haitao Che

Abstract In this paper, we are concerned with the split equality common fixed point problem. It is a significant generalization of the split feasibility problem, which can be used in various disciplines, such as medicine, military and biology, etc. We propose an alternating iteration algorithm for solving the split equality common fixed point problem with L-Lipschitz and quasi-pseudo-contractive mappings and prove that the sequence generated by the algorithm converges weakly to the solution of this problem. Finally, some numerical results are shown to confirm the feasibility and efficiency of the proposed algorithm.


Author(s):  
Yan Tang ◽  
Pongsakorn Sunthrayuth

In this work, we introduce a modified inertial algorithm for solving the split common null point problem without the prior knowledge of the operator norms in Banach spaces. The strong convergence theorem of our method is proved under suitable assumptions. We apply our result to the split feasibility problem, split equilibrium problem and split minimization problem. Finally, we provide some numerical experiments including compressed sensing to illustrate the performances of the proposed method. The result presented in this paper improves and generalizes many recent important results in the literature.


Author(s):  
A. A. Mebawondu ◽  
L. O. Jolaoso ◽  
H. A. Abass ◽  
O. K. Narain

In this paper, we propose a new modified relaxed inertial regularization method for finding a common solution of a generalized split feasibility problem, the zeros of sum of maximal monotone operators, and fixed point problem of two nonlinear mappings in real Hilbert spaces. We prove that the proposed method converges strongly to a minimum-norm solution of the aforementioned problems without using the conventional two cases approach. In addition, we apply our convergence results to the classical variational inequality and equilibrium problems, and present some numerical experiments to show the efficiency and applicability of the proposed method in comparison with other existing methods in the literature. The results obtained in this paper extend, generalize and improve several results in this direction.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Huan-chun Wu ◽  
Cao-zong Cheng

Inspired by Moudafi (2011) and Takahashi et al. (2008), we present the shrinking projection method for the split common fixed-point problem in Hilbert spaces, and we obtain the strong convergence theorem. As a special case, the split feasibility problem is also considered.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1012
Author(s):  
Suthep Suantai ◽  
Narin Petrot ◽  
Montira Suwannaprapa

We consider the split feasibility problem in Hilbert spaces when the hard constraint is common solutions of zeros of the sum of monotone operators and fixed point sets of a finite family of nonexpansive mappings, while the soft constraint is the inverse image of a fixed point set of a nonexpansive mapping. We introduce iterative algorithms for the weak and strong convergence theorems of the constructed sequences. Some numerical experiments of the introduced algorithm are also discussed.


Sign in / Sign up

Export Citation Format

Share Document