Note on the $N=2$ super Yang-Mills gauge theory in a noncommutative differential geometry

1998 ◽  
Vol 1 (3) ◽  
pp. 735-738
Author(s):  
Yoshitaka Okumura
1990 ◽  
Vol 31 (2) ◽  
pp. 323-330 ◽  
Author(s):  
Michel Dubois‐Violette ◽  
Richard Kerner ◽  
John Madore

1979 ◽  
Vol 19 (12) ◽  
pp. 3649-3652 ◽  
Author(s):  
Eve Kovacs ◽  
Shui-Yin Lo

1994 ◽  
Vol 49 (12) ◽  
pp. 6849-6856 ◽  
Author(s):  
Suzhou Huang ◽  
A. R. Levi
Keyword(s):  

2007 ◽  
Vol 04 (08) ◽  
pp. 1239-1257 ◽  
Author(s):  
CARLOS CASTRO

A novel Chern–Simons E8 gauge theory of gravity in D = 15 based on an octicE8 invariant expression in D = 16 (recently constructed by Cederwall and Palmkvist) is developed. A grand unification model of gravity with the other forces is very plausible within the framework of a supersymmetric extension (to incorporate spacetime fermions) of this Chern–Simons E8 gauge theory. We review the construction showing why the ordinary 11D Chern–Simons gravity theory (based on the Anti de Sitter group) can be embedded into a Clifford-algebra valued gauge theory and that an E8 Yang–Mills field theory is a small sector of a Clifford (16) algebra gauge theory. An E8 gauge bundle formulation was instrumental in understanding the topological part of the 11-dim M-theory partition function. The nature of this 11-dim E8 gauge theory remains unknown. We hope that the Chern–Simons E8 gauge theory of gravity in D = 15 advanced in this work may shed some light into solving this problem after a dimensional reduction.


2020 ◽  
Vol 2020 (2) ◽  
Author(s):  
Yasuhiro Sekino

Abstract Gauge/gravity correspondence is regarded as a powerful tool for the study of strongly coupled quantum systems, but its proof is not available. An unresolved issue that should be closely related to the proof is what kind of correspondence exists, if any, when gauge theory is weakly coupled. We report progress about this limit for the case associated with D$p$-branes ($0\le p\le 4$), namely, the duality between the $(p+1)$D maximally supersymmetric Yang–Mills theory and superstring theory on the near-horizon limit of the D$p$-brane solution. It has been suggested by supergravity analysis that the two-point functions of certain operators in gauge theory obey a power law with the power different from the free-field value for $p\neq 3$. In this work, we show for the first time that the free-field result can be reproduced by superstring theory on the strongly curved background. The operator that we consider is of the form ${\rm Tr}(Z^J)$, where $Z$ is a complex combination of two scalar fields. We assume that the corresponding string has the worldsheet spatial direction discretized into $J$ bits, and use the fact that these bits become non-interacting when ’t Hooft coupling is zero.


Sign in / Sign up

Export Citation Format

Share Document