m theory
Recently Published Documents


TOTAL DOCUMENTS

1240
(FIVE YEARS 156)

H-INDEX

80
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yasuyuki Hatsuda ◽  
Tadashi Okazaki

We analytically study the Fermi-gas formulation of sphere correlation functions of the Coulomb branch operators for 3d \mathcal{N}=4𝒩=4 ADHM theory with a gauge group U(N)U(N), an adjoint hypermultiplet and ll hypermultiplets which can describe a stack of NN M2-branes at A_{l-1}Al−1 singularities. We find that the leading coefficients of the perturbative grand canonical correlation functions are invariant under a hidden triality symmetry conjectured from the twisted M-theory. The triality symmetry also helps us to fix the next-to-leading corrections analytically.


2021 ◽  
Author(s):  
Ku Vit
Keyword(s):  

M theory and information units


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
N. Cribiori ◽  
D. Junghans ◽  
V. Van Hemelryck ◽  
T. Van Riet ◽  
T. Wrase
Keyword(s):  

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
L. Borsten ◽  
M. J. Duff ◽  
S. Nagy

Abstract When compact manifolds X and Y are both even dimensional, their Euler characteristics obey the Künneth formula χ(X × Y) = χ(X)χ(Y). In terms of the Betti numbers bp(X), χ(X) = Σp(−1)pbp(X), implying that χ(X) = 0 when X is odd dimensional. We seek a linear combination of Betti numbers, called ρ, that obeys an analogous formula ρ(X × Y) = χ(X)ρ(Y) when Y is odd dimensional. The unique solution is ρ(Y) = − Σp(−1)ppbp(Y). Physical applications include: (1) ρ → (−1)mρ under a generalized mirror map in d = 2m + 1 dimensions, in analogy with χ → (−1)mχ in d = 2m; (2) ρ appears naturally in compactifications of M-theory. For example, the 4-dimensional Weyl anomaly for M-theory on X4× Y7 is given by χ(X4)ρ(Y7) = ρ(X4× Y7) and hence vanishes when Y7 is self-mirror. Since, in particular, ρ(Y × S1) = χ(Y), this is consistent with the corresponding anomaly for Type IIA on X4× Y6, given by χ(X4)χ(Y6) = χ(X4× Y6), which vanishes when Y6 is self-mirror; (3) In the partition function of p-form gauge fields, ρ appears in odd dimensions as χ does in even.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 425
Author(s):  
Kazuho Hiraga ◽  
Yoshifumi Hyakutake

In the early universe, it is important to take into account the quantum effect of gravity to explain the feature of inflation. In this paper, we consider the M-theory effective action which consists of 11-dimensional supergravity and (Weyl)4 terms. The equations of motion are solved perturbatively, and the solution describes the inflation-like expansion in 4-dimensional spacetime. Equations of motion for tensor perturbations around this background are derived perturbatively. We also check that the equations of motion are obtained from the effective action up to the second order of the perturbations. Finally, we solve the equations of motion for the tensor perturbations perturbatively and obtain analytic expressions for them.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Ibrahima Bah ◽  
Federico Bonetti ◽  
Ruben Minasian ◽  
Emily Nardoni

Abstract We initiate a study of the holographic duals of a class of four-dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories that are engineered by wrapping M5-branes on a sphere with an irregular puncture. These notably include the strongly-coupled field theories of Argyres-Douglas type. Our solutions are obtained in 7d gauged supergravity, where they take the form of a warped product of AdS5 and a “half-spindle.” The irregular puncture is modeled by a localized M5-brane source in the internal space of the gravity duals. Our solutions feature a realization of supersymmetry that is distinct from the usual topological twist, as well as an interesting Stückelberg mechanism involving the gauge field associated to a generator of the isometry algebra of the internal space. We check the proposed duality by computing the holographic central charge, the flavor symmetry central charge, and the dimensions of various supersymmetric probe M2-branes, and matching these with the dual Argyres-Douglas field theories. Furthermore, we compute the large-N ’t Hooft anomalies of the field theories using anomaly inflow methods in M-theory, and find perfect agreement with the proposed duality.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Bobby Samir Acharya ◽  
Alex Kinsella ◽  
David R. Morrison

Abstract By fibering the duality between the E8 × E8 heterotic string on T3 and M-theory on K3, we study heterotic duals of M-theory compactified on G2 orbifolds of the form T7/$$ {\mathbb{Z}}_2^3 $$ ℤ 2 3 . While the heterotic compactification space is straightforward, the description of the gauge bundle is subtle, involving the physics of point-like instantons on orbifold singularities. By comparing the gauge groups of the dual theories, we deduce behavior of a “half-G2” limit, which is the M-theory analog of the stable degeneration limit of F-theory. The heterotic backgrounds exhibit point-like instantons that are localized on pairs of orbifold loci, similar to the “gauge-locking” phenomenon seen in Hořava-Witten compactifications. In this way, the geometry of the G2 orbifold is translated to bundle data in the heterotic background. While the instanton configuration looks surprising from the perspective of the E8 × E8 heterotic string, it may be understood as T-dual Spin(32)/ℤ2 instantons along with winding shifts originating in a dual Type I compactification.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Machiko Hatsuda ◽  
Warren Siegel

Abstract The exceptional symmetry is realized perturbatively in F-theory which is the manifest U-duality theory. The SO(5) U-duality symmetry acts on both the 16 space-time coordinates and the 10 worldvolume coordinates. Closure of the Virasoro algebra requires the Gauss law constraints on the worldvolume. This set of current algebras describes a F-theory 10-brane. The SO(5) duality symmetry is enlarged to the SO(6) symmetry in the Lagrangian formulation. We propose actions of the F-theory 10-brane with SO(5) and SO(6) symmetries. The gauge fields of the latter action are coset elements of SO(6)/SO(6; ℂ) which include both the SO(5)/SO(5; ℂ) spacetime backgrounds and the worldvolume backgrounds. The SO(5) current algebra obtained from the Pasti-Sorokin-Tonin M5-brane Lagrangian leads to the theory behind M-theory, namely F-theory. We also propose an action of the perturbative M-theory 5-brane obtained by sectioning the worldvolume of the F-theory 10-brane.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Jihwan Oh ◽  
Yehao Zhou

We study a four-dimensional domain wall in twisted M-theory. The domain wall is engineered by intersecting D6 branes in the type IIA frame. We identify the classical algebra of operators on the domain wall in terms of a higher vertex operator algebra, which describes the holomorphic subsector of a 4d \mathcal{N}=1𝒩=1 supersymmetric field theory, and compute the associated mode algebra. We conjecture that the quantum deformation of the classical algebra is isomorphic to the bulk algebra of operators from which we establish twisted holography of the domain wall.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Chris D. A. Blair ◽  
Domingo Gallegos ◽  
Natale Zinnato

Abstract We consider a non-relativistic limit of the bosonic sector of eleven-dimensional supergravity, leading to a theory based on a covariant ‘membrane Newton-Cartan’ (MNC) geometry. The local tangent space is split into three ‘longitudinal’ and eight ‘transverse’ directions, related only by Galilean rather than Lorentzian symmetries. This generalises the ten-dimensional stringy Newton-Cartan (SNC) theory. In order to obtain a finite limit, the field strength of the eleven-dimensional four-form is required to obey a transverse self-duality constraint, ultimately due to the presence of the Chern-Simons term in eleven dimensions. The finite action then gives a set of equations that is invariant under longitudinal and transverse rotations, Galilean boosts and local dilatations. We supplement these equations with an extra Poisson equation, coming from the subleading action. Reduction along a longitudinal direction gives the known SNC theory with the addition of RR gauge fields, while reducing along a transverse direction yields a new non-relativistic theory associated to D2 branes. We further show that the MNC theory can be embedded in the U-duality symmetric formulation of exceptional field theory, demonstrating that it shares the same exceptional Lie algebraic symmetries as the relativistic supergravity, and providing an alternative derivation of the extra Poisson equation.


Sign in / Sign up

Export Citation Format

Share Document