Degree distribution of a scale-free random graph model

2012 ◽  
Vol 28 (3) ◽  
pp. 587-598 ◽  
Author(s):  
Li Tan ◽  
Zhen Ting Hou ◽  
Xin Ru Liu
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
István Fazekas ◽  
Bettina Porvázsnyik

A random graph evolution mechanism is defined. The evolution studied is a combination of the preferential attachment model and the interaction of four vertices. The asymptotic behaviour of the graph is described. It is proved that the graph exhibits a power law degree distribution; in other words, it is scale-free. It turns out that any exponent in(2,∞)can be achieved. The proofs are based on martingale methods.


2005 ◽  
Vol 42 (03) ◽  
pp. 839-850 ◽  
Author(s):  
Zsolt Katona

Consider the random graph model of Barabási and Albert, where we add a new vertex in every step and connect it to some old vertices with probabilities proportional to their degrees. If we connect it to only one of the old vertices then this will be a tree. These graphs have been shown to have a power-law degree distribution, the same as that observed in some large real-world networks. We are interested in the width of the tree and we show that it is at the nth step; this also holds for a slight generalization of the model with another constant. We then see how this theoretical result can be applied to directory trees.


2005 ◽  
Vol 42 (3) ◽  
pp. 839-850 ◽  
Author(s):  
Zsolt Katona

Consider the random graph model of Barabási and Albert, where we add a new vertex in every step and connect it to some old vertices with probabilities proportional to their degrees. If we connect it to only one of the old vertices then this will be a tree. These graphs have been shown to have a power-law degree distribution, the same as that observed in some large real-world networks. We are interested in the width of the tree and we show that it is at the nth step; this also holds for a slight generalization of the model with another constant. We then see how this theoretical result can be applied to directory trees.


2020 ◽  
Author(s):  
Shalin Shah

<p>Consumer behavior in retail stores gives rise to product graphs based on copurchasing</p><p>or co-viewing behavior. These product graphs can be analyzed using</p><p>the known methods of graph analysis. In this paper, we analyze the product graph</p><p>at Target Corporation based on the Erd˝os-Renyi random graph model. In particular,</p><p>we compute clustering coefficients of actual and random graphs, and we find that</p><p>the clustering coefficients of actual graphs are much higher than random graphs.</p><p>We conduct the analysis on the entire set of products and also on a per category</p><p>basis and find interesting results. We also compute the degree distribution and</p><p>we find that the degree distribution is a power law as expected from real world</p><p>networks, contrasting with the ER random graph.</p>


2015 ◽  
Vol 52 (2) ◽  
pp. 375-390 ◽  
Author(s):  
Ágnes Backhausz ◽  
Tamás F. Móri

We deal with a random graph model evolving in discrete time steps by duplicating and deleting the edges of randomly chosen vertices. We prove the existence of an almost surely asymptotic degree distribution, with stretched exponential decay; more precisely, the proportion of vertices of degree d tends to some positive number cd > 0 almost surely as the number of steps goes to ∞, and cd ~ (eπ)1/2d1/4e-2√d holds as d → ∞.


2015 ◽  
Vol 52 (02) ◽  
pp. 375-390 ◽  
Author(s):  
Ágnes Backhausz ◽  
Tamás F. Móri

We deal with a random graph model evolving in discrete time steps by duplicating and deleting the edges of randomly chosen vertices. We prove the existence of an almost surely asymptotic degree distribution, with stretched exponential decay; more precisely, the proportion of vertices of degreedtends to some positive numbercd&gt; 0 almost surely as the number of steps goes to ∞, andcd~ (eπ)1/2d1/4e-2√dholds asd→ ∞.


2020 ◽  
Author(s):  
Shalin Shah

<p>Consumer behavior in retail stores gives rise to product graphs based on copurchasing</p><p>or co-viewing behavior. These product graphs can be analyzed using</p><p>the known methods of graph analysis. In this paper, we analyze the product graph</p><p>at Target Corporation based on the Erd˝os-Renyi random graph model. In particular,</p><p>we compute clustering coefficients of actual and random graphs, and we find that</p><p>the clustering coefficients of actual graphs are much higher than random graphs.</p><p>We conduct the analysis on the entire set of products and also on a per category</p><p>basis and find interesting results. We also compute the degree distribution and</p><p>we find that the degree distribution is a power law as expected from real world</p><p>networks, contrasting with the ER random graph.</p>


Sign in / Sign up

Export Citation Format

Share Document