slight generalization
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Karol Kampf ◽  
Jiří Novotný ◽  
Petr Vaško

Abstract We analyze a theory known as extended DBI, which interpolates between DBI and the U(N) × U(N)/U(N) non-linear sigma model and represents a nontrivial example of theories with mixed power counting. We discuss symmetries of the action and their geometrical origin; the special case of SU(2) extended DBI theory is treated in great detail. The revealed symmetries lead to a new type of graded soft theorem that allows us to prove on-shell constructibility of the tree-level S-matrix. It turns out that the on-shell constructibility of the full extended DBI remains valid, even if its DBI sub-theory is modified in such a way to preserve its own on-shell constructibility. We thus propose a slight generalization of the DBI sub-theory, which we call 2-scale DBI theory. Gluing it back to the rest of the extended DBI theory gives a new set of on-shell reconstructible theories — the 2-scale extended DBI theory and its descendants. The uniqueness of the parent theory is confirmed by the bottom-up approach that uses on-shell amplitude methods exclusively.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Meer Ashwinkumar ◽  
Lennart Schmidt ◽  
Meng-Chwan Tan

Abstract We present an explicit matrix algebra regularization of the algebra of volume-preserving diffeomorphisms of the n-torus. That is, we approximate the corresponding classical Nambu brackets using $$ \mathfrak{sl}\left({N}^{\left\lceil \frac{n}{2}\right\rceil },\mathrm{\mathbb{C}}\right) $$ sl N n 2 ℂ -matrices equipped with the finite bracket given by the completely anti-symmetrized matrix product, such that the classical brackets are retrieved in the N → ∞ limit. We then apply this approximation to the super 4-brane in 9 dimensions and give a regularized action in analogy with the matrix regularization of the supermembrane. This action exhibits a reduced gauge symmetry that we discuss from the viewpoint of L∞-algebras in a slight generalization to the construction of Lie 2-algebras from Bagger-Lambert 3-algebras.


Author(s):  
Johannes M. L. Dahl

AbstractAbout 140 years ago, Lord Kelvin derived the equations describing waves that travel along the axis of concentrated vortices such as tornadoes. Although Kelvin’s vortex waves, also known as centrifugal waves, feature prominently in the engineering and uid dynamics literature, they have not attracted as much attention in the field of atmospheric science. To remedy this circumstance, Kelvin’s elegant derivation is retraced, and slightly generalized, to obtain solutions for a hierarchy of vortex ows that model basic features of tornado-like vortices. This treatment seeks to draw attention to the important work that Lord Kelvin did in this field, and reveal the remarkably rich structure and dynamics of these waves. Kelvin’s solutions help explain the vortex breakdown phenomenon routinely observed in modeled tornado-like vortices, and it is shown that his work is compatible with the widely used criticality condition put forth by Benjamin in 1962. Moreover, it is demonstrated that Kelvin’s treatment, with the slight generalization, includes unstable wave solutions that have been invoked to explain some aspects of the formation of multiple-vortex tornadoes. The analysis of the unstable solutions also forms the basis for determining whether e.g., an axisymmetric or a spiral vortex breakdown occurs. Kelvin’s work thus helps understand some of the visible features of tornado-like vortices.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 795
Author(s):  
Vincent Lahoche ◽  
Mohamed Ouerfelli ◽  
Dine Ousmane Samary ◽  
Mohamed Tamaazousti

The tensorial principal component analysis is a generalization of ordinary principal component analysis focusing on data which are suitably described by tensors rather than matrices. This paper aims at giving the nonperturbative renormalization group formalism, based on a slight generalization of the covariance matrix, to investigate signal detection for the difficult issue of nearly continuous spectra. Renormalization group allows constructing an effective description keeping only relevant features in the low “energy” (i.e., large eigenvalues) limit and thus providing universal descriptions allowing to associate the presence of the signal with objectives and computable quantities. Among them, in this paper, we focus on the vacuum expectation value. We exhibit experimental evidence in favor of a connection between symmetry breaking and the existence of an intrinsic detection threshold, in agreement with our conclusions for matrices, providing a new step in the direction of a universal statement.


2021 ◽  
Vol 110 (124) ◽  
pp. 1-9
Author(s):  
Mladen Zekic

In 2016, Garner and Schappi gave a criterion for existence of finite biproducts in a specific class of monoidal categories. We provide an elementary proof of (a slight generalization of) their result. Also, we explain how to prove, by using the same technique, an analogous result including infinite biproducts.


Author(s):  
Simon Boulier ◽  
Nicolas Tabareau

Abstract Model categories constitute the major context for doing homotopy theory. More recently, homotopy type theory (HoTT) has been introduced as a context for doing syntactic homotopy theory. In this paper, we show that a slight generalization of HoTT, called interval type theory (⫿TT), allows to define a model structure on the universe of all types, which, through the model interpretation, corresponds to defining a model structure on the category of cubical sets. This work generalizes previous works of Gambino, Garner, and Lumsdaine from the universe of fibrant types to the universe of all types. Our definition of ⫿TT comes from the work of Orton and Pitts to define a syntactic approximation of the internal language of the category of cubical sets. In this paper, we extend the work of Orton and Pitts by introducing the notion of degenerate fibrancy, which allows to define a fibrant replacement, at the heart of the model structure on the universe of all types. All our definitions and propositions have been formalized using the Coq proof assistant.


2020 ◽  
Vol 10 (3) ◽  
pp. 251-273
Author(s):  
Yingjia Fu ◽  
Ruth J. Williams

This work concerns the asymptotic behavior of solutions to a (strictly) subcritical fluid model for a data communication network, where file sizes are generally distributed and the network operates under a fair bandwidth-sharing policy. Here we consider fair bandwidth-sharing policies that are a slight generalization of the [Formula: see text]-fair policies introduced by Mo and Walrand [Mo J, Walrand J (2000) Fair end-to-end window-based congestion control. IEEE/ACM Trans. Networks 8(5):556–567.]. Since the year 2000, it has been a standing problem to prove stability of the data communications network model of Massoulié and Roberts [Massoulié L, Roberts J (2000) Bandwidth sharing and admission control for elastic traffic. Telecommunication Systems 15(1):185–201.], with general file sizes and operating under fair bandwidth sharing policies, when the offered load is less than capacity (subcritical conditions). A crucial step in an approach to this problem is to prove stability of subcritical fluid model solutions. In 2012, Paganini et al. [Paganini F, Tang A, Ferragut A, Andrew LLH (2012) Network stability under alpha fair bandwidth allocation with general file size distribution. IEEE Trans. Automatic Control 57(3):579–591.] introduced a Lyapunov function for this purpose and gave an argument, assuming that fluid model solutions are sufficiently smooth in time and space that they are strong solutions of a partial differential equation and assuming that no fluid level on any route touches zero before all route levels reach zero. The aim of the current paper is to prove stability of the subcritical fluid model without these strong assumptions. Starting with a slight generalization of the Lyapunov function proposed by Paganini et al., assuming that each component of the initial state of a measure-valued fluid model solution, as well as the file size distributions, have no atoms and have finite first moments, we prove absolute continuity in time of the composition of the Lyapunov function with any subcritical fluid model solution and describe the associated density. We use this to prove that the Lyapunov function composed with such a subcritical fluid model solution converges to zero as time goes to infinity. This implies that each component of the measure-valued fluid model solution converges vaguely on [Formula: see text] to the zero measure as time goes to infinity. Under the further assumption that the file size distributions have finite pth moments for some p > 1 and that each component of the initial state of the fluid model solution has finite pth moment, it is proved that the fluid model solution reaches the measure with all components equal to the zero measure in finite time and that the time to reach this zero state has a uniform bound for all fluid model solutions having a uniform bound on the initial total mass and the pth moment of each component of the initial state. In contrast to the analysis of Paganini et al., we do not need their strong smoothness assumptions on fluid model solutions and we rigorously treat the realistic, but singular situation, where the fluid level on some routes becomes zero, whereas other route levels remain positive.


Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 84 ◽  
Author(s):  
Pablo Arrighi ◽  
Giuseppe Di Molfetta ◽  
Stefano Facchini

A discrete-time quantum walk (QW) is essentially a unitary operator driving the evolution of a single particle on the lattice. Some QWs have familiar physics PDEs as their continuum limit. Some slight generalization of them (allowing for prior encoding and larger neighbourhoods) even have the curved spacetime Dirac equation, as their continuum limit. In the(1+1)−dimensional massless case, this equation decouples as scalar transport equations with tunable speeds. We characterise and construct all those QWs that lead to scalar transport with tunable speeds. The local coin operator dictates that speed; we provide concrete techniques to tune the speed of propagation, by making use only of a finite number of coin operators-differently from previous models, in which the speed of propagation depends upon a continuous parameter of the quantum coin. The interest of such a discretization is twofold : to allow for easier experimental implementations on the one hand, and to evaluate ways of quantizing the metric field, on the other.


2017 ◽  
Vol 25 (1) ◽  
pp. 1-29 ◽  
Author(s):  
Noboru Endou

Summary The purpose of this article is to show Fubini’s theorem on measure [16], [4], [7], [15], [18]. Some theorems have the possibility of slight generalization, but we have priority to avoid the complexity of the description. First of all, for the product measure constructed in [14], we show some theorems. Then we introduce the section which plays an important role in Fubini’s theorem, and prove the relevant proposition. Finally we show Fubini’s theorem on measure.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Tomonari Suzuki

The concept of τ-distance was introduced in 2001; on the other hand, that of τ-function was introduced by Lin and Du. Strongly inspired by τ-function, we introduce a new concept, which is a very slight generalization of τ-distance and is more natural than τ-distance. So we could say that we redefine τ-distance in some sense.


Sign in / Sign up

Export Citation Format

Share Document