clustering coefficients
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Qihui Xu ◽  
Magdalena Markowska ◽  
Martin Chodorow ◽  
Ping Li

The study of code-switching (CS) speech has produced a wealth of knowledge in the understanding of bilingual language processing and representation. Here, we approach this issue by using a novel network science approach to map bilingual spontaneous CS speech. In Study 1, we constructed semantic networks on CS speech corpora and conducted community detections to depict the semantic organizations of the bilingual lexicon. The results suggest that the semantic organizations of the two lexicons in CS speech are largely distinct, with a small portion of overlap such that the semantic network community dominated by each language still contains words from the other language. In Study 2, we explored the effect of clustering coefficients on language choice during CS speech, by comparing clustering coefficients of words that were code-switched with their translation equivalents (TEs) in the other language. The results indicate that words where the language is switched have lower clustering coefficients than their TEs in the other language. Taken together, we show that network science is a valuable tool for understanding the overall map of bilingual lexicons as well as the detailed interconnections and organizations between the two languages.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuki Nakajima ◽  
Kazuyuki Shudo

AbstractThe measurement error of the network topology caused by missing network data during the collection process is a major concern in analyzing collected network data. It is essential to clarify the error between the properties of an original network and the collected network to provide an accurate analysis of the entire topology. However, the measurement error of the clustering coefficient, which is a fundamental network property, has not been well understood particularly from an analytical perspective. Here we analytically and numerically investigate the measurement error of two types of clustering coefficients, namely, the global clustering coefficient and the network average clustering coefficient, of a network that is randomly missing some proportion of the nodes. First, we derive the expected error of the clustering coefficients of an incomplete network given a set of randomly missing nodes. We analytically show that (i) the global clustering coefficient of the incomplete network has little expected error and that (ii) conversely, the network average clustering coefficient of the incomplete network is underestimated with an expected error that is dependent on a property that is specific to the graph. Then, we verify the analytical claims through numerical simulations using three typical network models, i.e., the Erdős–Rényi model, the Watts–Strogatz model, and the Barabási–Albert model, and the 15 real-world network datasets consisting of five network types. Although the simulation results on the three typical network models suggest that the measurement error of the clustering coefficients on graphs with considerably small clustering coefficients may not behave like the analytical claims, we demonstrate that the simulation results on real-world networks that typically have enough high clustering coefficients sufficiently support our analytical claims. This study facilitates an analytical understanding of the measurement error in network properties due to missing graph data.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qunsheng Zou ◽  
Yinyan Wang ◽  
Zixin Shu ◽  
Kuo Yang ◽  
Jingjing Wang ◽  
...  

This study aims to explore the topological regularities of the character network of ancient traditional Chinese medicine (TCM) book. We applied the 2-gram model to construct language networks from ancient TCM books. Each text of the book was separated into sentences and a TCM book was generated as a directed network, in which nodes represent Chinese characters and links represent the sequential associations between Chinese characters in the sentences (the occurrence of identical sequential associations is considered as the weight of this link). We first calculated node degrees, average path lengths, and clustering coefficients of the book networks and explored the basic topological correlations between them. Then, we compared the similarity of network nodes to assess the specificity of TCM concepts in the network. In order to explore the relationship between TCM concepts, we screened TCM concepts and clustered them. Finally, we selected the binary groups whose weights are greater than 10 in Inner Canon of Huangdi (ICH, 黄帝内经) and Treatise on Cold Pathogenic Disease (TCPD, 伤寒论), hoping to find the core differences of these two ancient TCM books through them. We found that the degree distributions of ancient TCM book networks are consistent with power law distribution. Moreover, the average path lengths of book networks are much smaller than random networks of the same scale; clustering coefficients are higher, which means that ancient book networks have small-world patterns. In addition, the similar TCM concepts are displayed and linked closely, according to the results of cosine similarity comparison and clustering. Furthermore, the core words of Inner Canon of Huangdi and Treatise on Cold Pathogenic Diseases have essential differences, which might indicate the significant differences of language and conceptual patterns between theoretical and clinical books. This study adopts language network approach to investigate the basic conceptual characteristics of ancient TCM book networks, which proposes a useful method to identify the underlying conceptual meanings of particular concepts conceived in TCM theories and clinical operations.


2020 ◽  
Author(s):  
Shuhan Zheng ◽  
Diksha Punia ◽  
Haiyan Wu ◽  
Quanying Liu

AbstractIn this study, we aim to elucidate how intranasal oxytocin modulates brain network characteristics, especially over the frontal network. As an essential brain hub of social cognition and emotion regulation, we will also explore the association between graphic properties of the frontal network and individual personality traits under oxytocin (OT) administration. 59 male participants administered intranasal OT or placebo were followed by restingstate fMRI scanning. The Correlation-based network model was applied to study OT modulation effects. We performed community detection algorithms and conducted further network analyses, including clustering coefficient, average shortest path and eigenvector centrality. In addition, we conducted a correlation analysis between clustering coefficients and the self-assessed psychological scales. Modular organizations in the OT group reveal integrations of the frontoparietal network (FPN) and the default mode network (DMN) over frontal regions. Results show that frontal nodes within the FPN are characterized by lower clustering coefficients and higher average shortest path values compared to the placebo group. Notably, these modulation effects on frontal network property are associated with Interpersonal Reactivity Index (IRI) fantasy value. Our results suggest that OT elevates integrations between FPN, DMN and limbic system as well as reduces small-worldness within the FPN. Our results support graph theoretic analysis as a potential tool to assess OT induced effects on the information integration in the frontal network.


2020 ◽  
Author(s):  
Shalin Shah

<p>Consumer behavior in retail stores gives rise to product graphs based on copurchasing</p><p>or co-viewing behavior. These product graphs can be analyzed using</p><p>the known methods of graph analysis. In this paper, we analyze the product graph</p><p>at Target Corporation based on the Erd˝os-Renyi random graph model. In particular,</p><p>we compute clustering coefficients of actual and random graphs, and we find that</p><p>the clustering coefficients of actual graphs are much higher than random graphs.</p><p>We conduct the analysis on the entire set of products and also on a per category</p><p>basis and find interesting results. We also compute the degree distribution and</p><p>we find that the degree distribution is a power law as expected from real world</p><p>networks, contrasting with the ER random graph.</p>


2020 ◽  
Author(s):  
Shalin Shah

<p>Consumer behavior in retail stores gives rise to product graphs based on copurchasing</p><p>or co-viewing behavior. These product graphs can be analyzed using</p><p>the known methods of graph analysis. In this paper, we analyze the product graph</p><p>at Target Corporation based on the Erd˝os-Renyi random graph model. In particular,</p><p>we compute clustering coefficients of actual and random graphs, and we find that</p><p>the clustering coefficients of actual graphs are much higher than random graphs.</p><p>We conduct the analysis on the entire set of products and also on a per category</p><p>basis and find interesting results. We also compute the degree distribution and</p><p>we find that the degree distribution is a power law as expected from real world</p><p>networks, contrasting with the ER random graph.</p>


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Sinan G. Aksoy ◽  
Cliff Joslyn ◽  
Carlos Ortiz Marrero ◽  
Brenda Praggastis ◽  
Emilie Purvine

Abstract We propose high-order hypergraph walks as a framework to generalize graph-based network science techniques to hypergraphs. Edge incidence in hypergraphs is quantitative, yielding hypergraph walks with both length and width. Graph methods which then generalize to hypergraphs include connected component analyses, graph distance-based metrics such as closeness centrality, and motif-based measures such as clustering coefficients. We apply high-order analogs of these methods to real world hypernetworks, and show they reveal nuanced and interpretable structure that cannot be detected by graph-based methods. Lastly, we apply three generative models to the data and find that basic hypergraph properties, such as density and degree distributions, do not necessarily control these new structural measurements. Our work demonstrates how analyses of hypergraph-structured data are richer when utilizing tools tailored to capture hypergraph-native phenomena, and suggests one possible avenue towards that end.


Sign in / Sign up

Export Citation Format

Share Document