Exploring heterogeneous information networks and random walk with restart for academic search

2012 ◽  
Vol 36 (1) ◽  
pp. 59-82 ◽  
Author(s):  
Meng-Fen Chiang ◽  
Jiun-Jiue Liou ◽  
Jen-Liang Wang ◽  
Wen-Chih Peng ◽  
Man-Kwan Shan
Author(s):  
He Jiang ◽  
Yangqiu Song ◽  
Chenguang Wang ◽  
Ming Zhang ◽  
Yizhou Sun

Heterogeneous information networks (HINs) is a general representation of many real world applications. The difference between HIN and traditional homogeneous graphs is that the nodes and edges in HIN are with types. Then in the many applications, we need to consider the types to make the approach more semantically meaningful. For the applications that annotation is expensive, on natural way is to consider semi-supervised learning over HIN. In this paper, we present a semi-supervised learning algorithm constrained by the types of HINs. We first decompose the original HIN into several semantically meaningful sub-graphs based the meta-graphs composed of entity and relation types. Then we perform random walk over the sub-graphs to propagate the labels from labeled data to unlabeled data. After we obtain all the labels propagated by different trials of random walk guided by meta-graphs, we use an ensemble algorithm to vote for the final labeling results. We use two public available datasets, 20-newsgroups and RCV1 datasets to test our algorithm. Experimental results show that our algorithm is better than the traditional semi-supervised learning algorithms for HINs. One particular by-product of this work is that we show that previous random walk approach guided by meta-paths can be non-stationary, which is the major reason we propose a meta-graph guide random walk for semi-supervised learning over HINs.


2021 ◽  
Vol 859 ◽  
pp. 80-115
Author(s):  
Pedro Ramaciotti Morales ◽  
Robin Lamarche-Perrin ◽  
Raphaël Fournier-S'niehotta ◽  
Rémy Poulain ◽  
Lionel Tabourier ◽  
...  

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jibing Wu ◽  
Lianfei Yu ◽  
Qun Zhang ◽  
Peiteng Shi ◽  
Lihua Liu ◽  
...  

The heterogeneous information networks are omnipresent in real-world applications, which consist of multiple types of objects with various rich semantic meaningful links among them. Community discovery is an effective method to extract the hidden structures in networks. Usually, heterogeneous information networks are time-evolving, whose objects and links are dynamic and varying gradually. In such time-evolving heterogeneous information networks, community discovery is a challenging topic and quite more difficult than that in traditional static homogeneous information networks. In contrast to communities in traditional approaches, which only contain one type of objects and links, communities in heterogeneous information networks contain multiple types of dynamic objects and links. Recently, some studies focus on dynamic heterogeneous information networks and achieve some satisfactory results. However, they assume that heterogeneous information networks usually follow some simple schemas, such as bityped network and star network schema. In this paper, we propose a multityped community discovery method for time-evolving heterogeneous information networks with general network schemas. A tensor decomposition framework, which integrates tensor CP factorization with a temporal evolution regularization term, is designed to model the multityped communities and address their evolution. Experimental results on both synthetic and real-world datasets demonstrate the efficiency of our framework.


Sign in / Sign up

Export Citation Format

Share Document