Natural language question answering over knowledge graph: the marriage of SPARQL query and keyword search

Author(s):  
Xin Hu ◽  
Jiangli Duan ◽  
Depeng Dang
Author(s):  
D. A. Evseev ◽  
◽  
M. Yu. Arkhipov ◽  

In this paper we describe question answering system for answering of complex questions over Wikidata knowledge base. Unlike simple questions, which require extraction of single fact from the knowledge base, complex questions are based on more than one triplet and need logical or comparative reasoning. The proposed question answering system translates a natural language question into a query in SPARQL language, execution of which gives an answer. The system includes the models which define the SPARQL query template corresponding to the question and then fill the slots in the template with entities, relations and numerical values. For entity detection we use BERTbased sequence labelling model. Ranking of candidate relations is performed in two steps with BiLSTM and BERT-based models. The proposed models are the first solution for LC-QUAD2.0 dataset. The system is capable of answering complex questions which involve comparative or boolean reasoning.


2019 ◽  
Vol 8 (10) ◽  
pp. 428 ◽  
Author(s):  
Bingchuan Jiang ◽  
Liheng Tan ◽  
Yan Ren ◽  
Feng Li

The core of intelligent virtual geographical environments (VGEs) is the formal expression of geographic knowledge. Its purpose is to transform the data, information, and scenes of a virtual geographic environment into “knowledge” that can be recognized by computer, so that the computer can understand the virtual geographic environment more easily. A geographic knowledge graph (GeoKG) is a large-scale semantic web that stores geographical knowledge in a structured form. Based on a geographic knowledge base and a geospatial database, intelligent interactions with virtual geographical environments can be realized by natural language question answering, entity links, and so on. In this paper, a knowledge-enhanced Virtual geographical environments service framework is proposed. We construct a multi-level semantic parsing model and an enhanced GeoKG for structured geographic information data, such as digital maps, 3D virtual scenes, and unstructured information data. Based on the GeoKG, we propose a bilateral LSTM-CRF (long short-term memory- conditional random field) model to achieve natural language question answering for VGEs and conduct experiments on the method. The results prove that the method of intelligent interaction based on the knowledge graph can bridge the distance between people and virtual environments.


Author(s):  
Xinmeng Li ◽  
Mamoun Alazab ◽  
Qian Li ◽  
Keping Yu ◽  
Quanjun Yin

AbstractKnowledge graph question answering is an important technology in intelligent human–robot interaction, which aims at automatically giving answer to human natural language question with the given knowledge graph. For the multi-relation question with higher variety and complexity, the tokens of the question have different priority for the triples selection in the reasoning steps. Most existing models take the question as a whole and ignore the priority information in it. To solve this problem, we propose question-aware memory network for multi-hop question answering, named QA2MN, to update the attention on question timely in the reasoning process. In addition, we incorporate graph context information into knowledge graph embedding model to increase the ability to represent entities and relations. We use it to initialize the QA2MN model and fine-tune it in the training process. We evaluate QA2MN on PathQuestion and WorldCup2014, two representative datasets for complex multi-hop question answering. The result demonstrates that QA2MN achieves state-of-the-art Hits@1 accuracy on the two datasets, which validates the effectiveness of our model.


2007 ◽  
Vol 13 (2) ◽  
pp. 185-189
Author(s):  
ROBERT DALE

“Powerset Hype to Boiling Point”, said a February headline on TechCrunch. In the last installment of this column, I asked whether 2007 would be the year of question-answering. My query was occasioned by a number of new attempts at natural language question-answering that were being promoted in the marketplace as the next advance upon search, and particularly by the buzz around the stealth-mode natural language search company Powerset. That buzz continued with a major news item in the first quarter of this year: in February, Xerox PARC and PowerSet struck a much-anticipated deal whereby PowerSet won exclusive rights to use PARC's natural language technology, as announced in a VentureBeat posting. Following the scoop, other news sources drew the battle lines with titles like “Can natural language search bring down Google?”, “Xerox vs. Google?”, and “Powerset and Xerox PARC team up to beat Google”. An April posting on Barron's Online noted that an analyst at Global Equities Research had cited Powerset in his downgrading of Google from Buy to Neutral. And, all this on the basis of a product which, at the time of writing, very few people have actually seen. Indications are that the search engine is expected to go live by the end of the year, so we have a few more months to wait to see whether this really is a Google-killer. Meanwhile, another question remaining unanswered is what happened to the Powerset engineer who seemed less sure about the technology's capabilities: see the segment at the end of D7TV's PartyCrasher video from the Powerset launch party. For a more confident appraisal of natural language search, check out the podcast of Barney Pell, CEO of Powerset, giving a lecture at the University of California–Berkeley.


2010 ◽  
Vol 23 (2-3) ◽  
pp. 241-265 ◽  
Author(s):  
Ulrich Furbach ◽  
Ingo Glöckner ◽  
Björn Pelzer

Sign in / Sign up

Export Citation Format

Share Document