First nonzero eigenvalue of a minimal hypersurface in the unit sphere

2011 ◽  
Vol 191 (3) ◽  
pp. 529-537 ◽  
Author(s):  
Sharief Deshmukh
2007 ◽  
Vol 09 (02) ◽  
pp. 183-200 ◽  
Author(s):  
YOUNG JIN SUH ◽  
HAE YOUNG YANG

In this paper, we study n-dimensional compact minimal hypersurfaces in a unit sphere Sn+1(1) and give an answer for S. S. Chern's conjecture. We have shown that [Formula: see text] if S > n, and prove that an n-dimensional compact minimal hypersurface with constant scalar curvature in Sn+1(1) is a totally geodesic sphere or a Clifford torus if [Formula: see text], where S denotes the squared norm of the second fundamental form of this hypersurface.


2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Václav Voráček ◽  
Mirko Navara

AbstractWe show that there is no non-constant assignment of zeros and ones to points of a unit sphere in $$\mathbb{R}^3$$ R 3 such that for every three pairwisely orthogonal vectors, an odd number of them is assigned 1. This is a new strengthening of the Bell–Kochen–Specker theorem, which proves the non-existence of hidden variables in quantum theories.


1971 ◽  
Vol 23 (1) ◽  
pp. 12-21
Author(s):  
J. Malzan

If ρ(G) is a finite, real, orthogonal group of matrices acting on the real vector space V, then there is defined [5], by the action of ρ(G), a convex subset of the unit sphere in V called a fundamental region. When the unit sphere is covered by the images under ρ(G) of a fundamental region, we obtain a semi-regular figure.The group-theoretical problem in this kind of geometry is to find when the fundamental region is unique. In this paper we examine the subgroups, ρ(H), of ρ(G) with a view of finding what subspace, W of V consists of vectors held fixed by all the matrices of ρ(H). Any such subspace lies between two copies of a fundamental region and so contributes to a boundary of both. If enough of these boundaries might be found, the fundamental region would be completely described.


Sign in / Sign up

Export Citation Format

Share Document