scholarly journals Fractional Laplacian, homogeneous Sobolev spaces and their realizations

2020 ◽  
Vol 199 (6) ◽  
pp. 2243-2261 ◽  
Author(s):  
Alessandro Monguzzi ◽  
Marco M. Peloso ◽  
Maura Salvatori
2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Thomas Eiter ◽  
Mads Kyed

AbstractThe equations governing the flow of a viscous incompressible fluid around a rigid body that performs a prescribed time-periodic motion with constant axes of translation and rotation are investigated. Under the assumption that the period and the angular velocity of the prescribed rigid-body motion are compatible, and that the mean translational velocity is non-zero, existence of a time-periodic solution is established. The proof is based on an appropriate linearization, which is examined within a setting of absolutely convergent Fourier series. Since the corresponding resolvent problem is ill-posed in classical Sobolev spaces, a linear theory is developed in a framework of homogeneous Sobolev spaces.


2020 ◽  
Vol 32 (4) ◽  
pp. 995-1026
Author(s):  
Carme Cascante ◽  
Joaquín M. Ortega

AbstractIn this paper, we show that if {b\in L^{2}(\mathbb{R}^{n})}, then the bilinear form defined on the product of the non-homogeneous Sobolev spaces {H_{s}^{2}(\mathbb{R}^{n})\times H_{s}^{2}(\mathbb{R}^{n})}, {0<s<1}, by(f,g)\in H_{s}^{2}(\mathbb{R}^{n})\times H_{s}^{2}(\mathbb{R}^{n})\to\int_{% \mathbb{R}^{n}}(\mathrm{Id}-\Delta)^{\frac{s}{2}}(fg)(\mathbf{x})b(\mathbf{x})% \mathop{}\!d\mathbf{x}is continuous if and only if the positive measure {\lvert b(\mathbf{x})\rvert^{2}\mathop{}\!d\mathbf{x}} is a trace measure for {H_{s}^{2}(\mathbb{R}^{n})}.


2018 ◽  
Vol 457 (1) ◽  
pp. 722-750
Author(s):  
Carme Cascante ◽  
Joan Fàbrega ◽  
Joaquín M. Ortega

2019 ◽  
Vol 277 (7) ◽  
pp. 2288-2380 ◽  
Author(s):  
Giovanni Leoni ◽  
Ian Tice

2021 ◽  
Vol 213 ◽  
pp. 112501
Author(s):  
Debanjan Nandi

2021 ◽  
Vol 4 (4) ◽  
pp. 1-33
Author(s):  
Gerd Grubb ◽  

<abstract><p>The paper treats pseudodifferential operators $ P = \operatorname{Op}(p(\xi)) $ with homogeneous complex symbol $ p(\xi) $ of order $ 2a &gt; 0 $, generalizing the fractional Laplacian $ (-\Delta)^a $ but lacking its symmetries, and taken to act on the halfspace ${\mathbb R}^n_+$. The operators are seen to satisfy a principal $ \mu $-transmission condition relative to ${\mathbb R}^n_+$, but generally not the full $ \mu $-transmission condition satisfied by $ (-\Delta)^a $ and related operators (with $ \mu = a $). However, $ P $ acts well on the so-called $ \mu $-transmission spaces over ${\mathbb R}^n_+$ (defined in earlier works), and when $ P $ moreover is strongly elliptic, these spaces are the solution spaces for the homogeneous Dirichlet problem for $ P $, leading to regularity results with a factor $ x_n^\mu $ (in a limited range of Sobolev spaces). The information is then shown to be sufficient to establish an integration by parts formula over ${\mathbb R}^n_+$ for $ P $ acting on such functions. The formulation in Sobolev spaces, and the results on strongly elliptic operators going beyond certain operators with real kernels, are new. Furthermore, large solutions with nonzero Dirichlet traces are described, and a halfways Green's formula is established, as new results for these operators. Since the principal $ \mu $-transmission condition has weaker requirements than the full $ \mu $-transmission condition assumed in earlier papers, new arguments were needed, relying on work of Vishik and Eskin instead of the Boutet de Monvel theory. The results cover the case of nonsymmetric operators with real kernel that were only partially treated in a preceding paper.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document