scholarly journals Viscous Flow Around a Rigid Body Performing a Time-periodic Motion

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Thomas Eiter ◽  
Mads Kyed

AbstractThe equations governing the flow of a viscous incompressible fluid around a rigid body that performs a prescribed time-periodic motion with constant axes of translation and rotation are investigated. Under the assumption that the period and the angular velocity of the prescribed rigid-body motion are compatible, and that the mean translational velocity is non-zero, existence of a time-periodic solution is established. The proof is based on an appropriate linearization, which is examined within a setting of absolutely convergent Fourier series. Since the corresponding resolvent problem is ill-posed in classical Sobolev spaces, a linear theory is developed in a framework of homogeneous Sobolev spaces.

Author(s):  
Joseph M. Schimmels ◽  
Luis E. Criales

A planar rigid-body velocity metric based on the instantaneous velocity of all particles that constitute a rigid body is developed. A measure based on the discrepancy in the translational velocity at each particle for two different planar twists is introduced. The calculation of the measure is simplified to the calculation of the product of: 1) the discrepancy in angular velocity, and 2) the average distance of the body from the instantaneous center associated with the twist discrepancy. It is shown that this measure satisfies the mathematical requirements of a metric and is physically consistent. It does not depend on either the selection of length scale or the frames used to describe the body motion. Although the metric does depend on body geometry, it can be calculated efficiently using body decomposition. An example demonstrating the application of the metric to an assembly problem is presented.


1983 ◽  
Vol 105 (2) ◽  
pp. 92-95 ◽  
Author(s):  
A. J. Laub ◽  
G. R. Shiflett

The instantaneous velocity of a rigid body in space is characterized by an angular and translational velocity. By representing the angular velocity as a matrix and the translational component as a vector the velocity of any point in the rigid body may be found if the position of the point and the parameters of the angular and translational velocities are known. Alternatively, the parameters of the rigid body velocity may be determined if the velocity and position of three points fixed in the body are known. In this paper, a new matrix-theory-based method is derived for determining the instantaneous velocity parameters of rigid body motion in terms of the velocity and position of three noncollinear points fixed in the body. The method is shown to possess certain advantages over traditional vectoral solutions to the same problem.


2019 ◽  
Vol 48 (3) ◽  
pp. 283-309 ◽  
Author(s):  
Stefan Holzinger ◽  
Joachim Schöberl ◽  
Johannes Gerstmayr

Abstract A novel formulation for the description of spatial rigid body motion using six non-redundant, homogeneous local velocity coordinates is presented. In contrast to common practice, the formulation proposed here does not distinguish between a translational and rotational motion in the sense that only translational velocity coordinates are used to describe the spatial motion of a rigid body. We obtain these new velocity coordinates by using the body-fixed translational velocity vectors of six properly selected points on the rigid body. These vectors are projected into six local directions and thus give six scalar velocities. Importantly, the equations of motion are derived without the aid of the rotation matrix or the angular velocity vector. The position coordinates and orientation of the body are obtained using the exponential map on the special Euclidean group $\mathit{SE}(3)$SE(3). Furthermore, we introduce the appropriate inverse tangent operator on $\mathit{SE}(3)$SE(3) in order to be able to solve the incremental motion vector differential equation. In addition, we present a modified version of a recently introduced a fourth-order Runge–Kutta Lie-group time integration scheme such that it can be used directly in our formulation. To demonstrate the applicability of our approach, we simulate the unstable rotation of a rigid body.


2020 ◽  
Vol 32 (4) ◽  
pp. 995-1026
Author(s):  
Carme Cascante ◽  
Joaquín M. Ortega

AbstractIn this paper, we show that if {b\in L^{2}(\mathbb{R}^{n})}, then the bilinear form defined on the product of the non-homogeneous Sobolev spaces {H_{s}^{2}(\mathbb{R}^{n})\times H_{s}^{2}(\mathbb{R}^{n})}, {0<s<1}, by(f,g)\in H_{s}^{2}(\mathbb{R}^{n})\times H_{s}^{2}(\mathbb{R}^{n})\to\int_{% \mathbb{R}^{n}}(\mathrm{Id}-\Delta)^{\frac{s}{2}}(fg)(\mathbf{x})b(\mathbf{x})% \mathop{}\!d\mathbf{x}is continuous if and only if the positive measure {\lvert b(\mathbf{x})\rvert^{2}\mathop{}\!d\mathbf{x}} is a trace measure for {H_{s}^{2}(\mathbb{R}^{n})}.


Author(s):  
Guangbo Hao ◽  
Xianwen Kong ◽  
Xiuyun He

A planar reconfigurable linear (also rectilinear) rigid-body motion linkage (RLRBML) with two operation modes, that is, linear rigid-body motion mode and lockup mode, is presented using only R (revolute) joints. The RLRBML does not require disassembly and external intervention to implement multi-task requirements. It is created via combining a Robert’s linkage and a double parallelogram linkage (with equal lengths of rocker links) arranged in parallel, which can convert a limited circular motion to a linear rigid-body motion without any reference guide way. This linear rigid-body motion is achieved since the double parallelogram linkage can guarantee the translation of the motion stage, and Robert’s linkage ensures the approximate straight line motion of its pivot joint connecting to the double parallelogram linkage. This novel RLRBML is under the linear rigid-body motion mode if the four rocker links in the double parallelogram linkage are not parallel. The motion stage is in the lockup mode if all of the four rocker links in the double parallelogram linkage are kept parallel in a tilted position (but the inner/outer two rocker links are still parallel). In the lockup mode, the motion stage of the RLRBML is prohibited from moving even under power off, but the double parallelogram linkage is still moveable for its own rotation application. It is noted that further RLRBMLs can be obtained from the above RLRBML by replacing Robert’s linkage with any other straight line motion linkage (such as Watt’s linkage). Additionally, a compact RLRBML and two single-mode linear rigid-body motion linkages are presented.


Sign in / Sign up

Export Citation Format

Share Document