Tensile bond strength of light-cured resin-reinforced glass ionomer cement with delayed light exposure

Odontology ◽  
2001 ◽  
Vol 89 (1) ◽  
pp. 45-48 ◽  
Author(s):  
F. Ando ◽  
A. Komori ◽  
I. Kojima
2014 ◽  
Vol 25 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Luana Mafra Marti ◽  
Margareth da Mata ◽  
Beatriz Ferraz-Santos ◽  
Elcilaine Rizzato Azevedo ◽  
Elisa Maria Aparecida Giro ◽  
...  

The objective of this work was to determine the effect of different concentrations of chlorhexidine digluconate (CHX) on setting time, surface hardness, maximum tensile bond strength and antibacterial activity of a glass ionomer cement (GIC). The material used as control was Ketac Molar Easymix GIC. CHX was incorporated into the GIC during its manipulation at concentrations of 0.5, 1.0 and 2.0%. Antimicrobial activity against S. mutans and L. acidophilus was evaluated by means of agar diffusion test. Tensile bond strength data were analyzed statistically using Analysis of variance and Tukey's test. Setting time, Vickers hardness and agar diffusion test were analyzed using Kruskal-Wallis and Mann-Whitney tests at a significance level of 5%. It was observed that adding CHX at concentrations of 1% and 2% increased significantly the setting time of the material (p=0.012 and p=0.003, respectively). There was no significant difference between control and 0.5% CHX groups regarding the setting time. Addition of 2% CHX decreased significantly the surface hardness in relation to the control group (p=0.009), followed by the 1% CHX group (p=0.009). The tensile bond strength of the material also decreased significantly after adding CHX at a concentration of 2% (p=0.001). Addition of CHX promoted formation of an inhibition halo in both bacterial strains for all concentrations. The results showed that the best option for clinical use of GIC with CHX is at 0.5% concentration, since antibacterial activity increased and the physical-mechanical properties remained unchanged.


2007 ◽  
Vol 77 (1) ◽  
pp. 113-116 ◽  
Author(s):  
Gabriella Rosenbach ◽  
Julio Pedrae Cal-Neto ◽  
Silvio Rosan Oliveira ◽  
Orlando Chevitarese ◽  
Marco Antonio Almeida

Abstract Objective: To evaluate the influence of enamel etching on tensile bond strength of orthodontic brackets bonded with resin-reinforced glass ionomer cement. Materials and Methods: The sample group consisted of 15 patients who had indications for extraction of four premolars for orthodontic reasons, equally divided into two different groups according to bracket and enamel preparation. Brackets were bonded in vivo, by the same operator, using a split mouth random technique: Group 1 (control), phosphoric acid + Fuji Ortho LC; Group 2, Fuji Ortho LC without acid conditioning. The teeth were extracted after 4 weeks using elevators. An Instron Universal Testing Machine was used to apply a tensile force directly to the enamel-bracket interface at a speed of 0.5 mm/min. The groups were compared using a Mann-Whitney U-test and Weibull analysis. Results: Mean results and standard deviations (in MPa) for the groups were: Group 1, 6.26 (3.21), Group 2, 6.52 (2.73). No significant difference was observed in the bond strengths of the two groups evaluated (P = .599). Conclusions: Fuji Ortho LC showed adequate shear bond strength and may be suitable for clinical use.


1985 ◽  
Vol 53 (2) ◽  
pp. 194-198 ◽  
Author(s):  
W.R. Lacefield ◽  
M.C. Reindl ◽  
D.H. Retief

Sign in / Sign up

Export Citation Format

Share Document