surface hardness
Recently Published Documents


TOTAL DOCUMENTS

1792
(FIVE YEARS 610)

H-INDEX

33
(FIVE YEARS 9)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 139
Author(s):  
Ki-Hong Kim ◽  
Won-Beom Lee ◽  
Tae-Hwan Kim ◽  
Seok-Won Son

Potential-controlled nitriding is an effective technique for enhancing the life of steel molds and dies by improving their surface hardness and toughness against fatigue damage. In this study, the effect of the nitriding potential on the microstructure and fracture toughness of nitrided AISI D2 steels was investigated. The nitrided layers were characterized by microhardness measurements, optical microscopy, and scanning electron microscopy, and their phases were identified by X-ray and electron backscatter diffraction. As the nitriding potential increased to 2.0 atm−1/2, an increase in the surface hardness and fracture toughness was observed with the growth of the compound layer. However, both the surface hardness and the fracture toughness decreased at the higher nitriding potential of 5.0 atm−1/2 owing to the increased porosity in the compound layers, which mainly consist of the ε (Fe2–3N) phase. Additionally, by observing crack growth behavior, the fracture toughness was analyzed considering the material characteristics of the diffusion and compound layers. The fracture toughness was influenced by the location of the initial Palmqvist cracks due to the localized plastic deformation of the diffusion layer and increased crack length due to the porous compound layer.


Author(s):  
Van Nga Tran Thi ◽  
Khanh Nguyen Lam ◽  
Cuong Nguyen Van

In machining processes, grinding is often chosen as the final machining method. Grinding is often chosen as the final machining method. This process has many advantages such as high precision and low surface roughness. It depends on many parameters including grinding parameters, dressing parameters and lubrication conditions. In grinding, the surface roughness of a workpiece has a significant influence on quality of the part. This paper presents a study of the grinding surface roughness predictions of workpieces. Based on the previous studies, the study built a relationship between the abrasive grain tip radius and the Standard marking systems of the grinding wheel for conventional and superabrasive grinding wheels (diamond and CBN abrasive). Based on this, the grinding surface roughness was predicted. The proposed model was verified by comparing the predicted and experimental results. Appling the research results, the surface roughness when grinding three types of steel D3, A295M and SAE 420 with Al2O3 and CBN grinding wheels were predicted. The predicted surface roughness values were close to the experimental values, the average deviation between predictive results and experimental results is 15.11 % for the use of Al2O3 grinding wheels and 24.29 % for the case of using CBN grinding wheels. The results of the comparison between the predicted model and the experiment show that the method of surface roughness presented in this study can be used to predict surface roughness in each specific case. The proposed model was verified by comparing the predicted and measured results of surface hardness. This model can be used to predict the surface hardness when surface grinding


Author(s):  
Belén González Sánchez ◽  
Antonia Navarro ◽  
Judith Ramírez-Casas ◽  
Joan Ramon Rosell

In traditional architecture, the construction systems used have always been linked to the material resources of the environment. In the areas of extraction of gypsum in the Iberian Peninsula, the use of this material as a conglomerant was not limited to the interior lining of vertical and/or horizontal walls or to interior decorations, as is the case today, but proved to be a very versatile material, which could be used both in structural elements and in finishing elements and decorations. This study shows the preliminary results of an ongoing research on the recovery of traditional gypsum pavements, where three types of traditional gypsum plasters with natural products such as collagen, coconut soap, potassium soap, vegetable oil and marshmallow root were tested. The hygroscopic behaviour of the treated samples has been evaluated from the capillarity water absorption and the contact angle, due to their high hygroscopicity. On the other hand, the density and porosity, surface hardness and thermal conductivity of the samples have also been determined.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Maxim V. Zdorovets ◽  
Dmitriy I. Shlimas ◽  
Artem L. Kozlovskiy ◽  
Daryn B. Borgekov

The paper is devoted to the study of radiation-induced damage kinetics in beryllium oxide ceramics under irradiation with low-energy helium ions with fluences of 1015–1018 ion/cm2. It was revealed that at irradiation fluences above 1017 ion/cm2, a decrease in radiation-induced damage formation and accumulation rate is observed, which indicates the saturation effect. At the same time, the main mechanisms of structural changes caused by irradiation at these fluences are amorphization processes and dislocation density increase, while at fluences of 1015–1016 ion/cm2, the main mechanisms of structural changes are due to the reorientation of crystallites and a change in texture, with a small contribution of crystal lattice distorting factors. It was discovered that the radiation-induced damage accumulation as well as an implanted helium concentration increase leads to the surface layer destruction, which is expressed in the ceramic surface hardness and wear resistance deterioration. It was determined that with irradiation fluences of 1015–1016 ion/cm2, the decrease in thermal conductivity is minimal and is within the measurement error, while an increase in the irradiation fluence above 1017 ion/cm2 leads to an increase in heat losses by more than 10%.


2022 ◽  
Vol 12 (1) ◽  
pp. 469
Author(s):  
Kateryna Kostyk ◽  
Ivan Kuric ◽  
Milan Saga ◽  
Viktoriia Kostyk ◽  
Vitalii Ivanov ◽  
...  

The relevant problem is searching for up-to-date methods to improve tools and machine parts’ performance due to the hardening of surface layers. This article shows that, after the magnetic-pulse treatment of bearing steel Cr15, its surface microhardness was increased by 40–50% compared to baseline. In this case, the depth of the hardened layer was 0.08–0.1 mm. The magnetic-pulse processing of hard alloys reduces the coefficient of microhardness variation from 0.13 to 0.06. A decrease in the coefficient of variation of wear resistance from 0.48 to 0.27 indicates the increased stability of physical and mechanical properties. The nitriding of alloy steels was accelerated 10-fold that of traditional gas upon receipt of the hardened layer depth of 0.3–0.5 mm. As a result, the surface hardness was increased to 12.7 GPa. Boriding in the nano-dispersed powder was accelerated 2–3-fold compared to existing technologies while ensuring surface hardness up to 21–23 GPa with a boride layer thickness of up to 0.073 mm. Experimental data showed that the cutting tool equipped with inserts from WC92Co8 and WC79TiC15 has a resistance relative to the untreated WC92Co8 higher by 183% and WC85TiC6Co9—than 200%. Depending on alloy steel, nitriding allowed us to raise wear resistance by 120–177%, boriding—by 180–340%, and magneto-pulse treatment—by more than 183–200%.


2022 ◽  
Vol 58 (4) ◽  
pp. 197-209
Author(s):  
Nuran Yanikoglu ◽  
Zeynep Yesil Duymus ◽  
Sebahat Findik Aydiner

The aim of this study is to investigate the effect of polishing with different solutions on the surface roughness and hardness of two different polymethylmethacrylate temporary restoration materials. In the study, two different temporary crown materials prepared in the CAD / CAM system and prepared by the traditional method were used to test a total of 224 pieces of 10 mm diameter and 2 mm thickness. After the surface roughness and micro hardness values were measured, samples were randomly divided into seven groups among themselves; After waiting 24 h, 1 and 3 weeks, values were measured again. Data were evaluated using 3-way analysis of variance (ANOVA) and Tukey HSD test. The temporary restorative materials surface hardness and roughnesses are important to be able to stay in oral cavity without any changes. And it is also important to determine which of the materials (prepared by temporary conventional materiels or by the CAD/CAM) are less effected by the liquids in oral cavity.


2022 ◽  
Vol 1 (2) ◽  
pp. 49-53
Author(s):  
Angga Yunis Prasetya ◽  
Darmanto Darmanto ◽  
Muhammad Dzulfikar

Nitriding has been carried out using plasma nitriding techniques for surface treatment of Titanium as a biomaterial component. The purpose of this study was to determine the effect of plasma nitriding on surface hardness that occurs in titanium. The material used is Titanium Alloy (Ti-6Al-4V) Grade 5 which is processed by plasma nitriding by varying nitrogen (N2) and argon (Ar) gases of (100% N2/0% Ar), (95% N2/5% Ar), (90% N2/10% Ar), (85% N2/15% Ar), (80% N2/20% Ar), and (75% N2/25% Ar), and temperature 400ºC, time 5 hours and a pressure of 1.6 bar. The test results show that the optimum hardness is found in the gas composition with a ratio of 95% N2: 5% Ar. Obtained a hardness of 371 HV/VHN or an increase of 159% of the raw material with hardness value of 143 HV/VHN


2022 ◽  
Vol 1217 (1) ◽  
pp. 012010
Author(s):  
S C On ◽  
S A Bahrin ◽  
M Gakim ◽  
W Y H Liew ◽  
F M Tamiri ◽  
...  

Abstract The purpose of this paper is to review the early development of electro-carburisation technology and the research findings related to the electro-carburisation process. In general, conventional liquid carburisation of steel using a molten cyanide bath is carried out to improve the performance of mild steel, however this process produces toxic cyanide waste. Thus, other alternatives for liquid carburisation are necessary. Electro-carburisation process using carbonate-base molten salt, under a CO2 environment was developed as one of the alternatives to liquid carburising. Metal to be treated is exposed to the carbon-rich liquid in the molten cyanide bath and electro-carburisation. However, the metal is simply immersed inside the cyanide bath during conventional liquid carburising, while connected to the cathode in the electro-carburisation. The electro-carburisation involves a diffusion of carbon atoms into the surface of the metal which enhance the surface hardness of the metal. The effects of electrolysis parameters to the surface hardness and case hardening of treated metal have been reported in several journals. This article summarises the research findings. Apart from that, the quenching process and heat treatment post quenching also plays an important role in the quality of the carburised metal, therefore also reviewed in this article.


Electroless nickel-boron binary coatings were obtained with various bath compositions to investigate the effect of bath parameters on tribological and mechanical behaviours of the coating. Characterisation of the coating for surface morphology and phase structure is done using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD), respectively, whereas tribological behaviour of coatings is evaluated on a pin-on-disc tribo-tester. Elastic modulus and surface hardness of coatings have been obtained using nano-indentation technique, while the scratch behaviour of the coatings has been determined using micro-scratch test. Corrosion resistance of coatings is also determined. It is observed that surface roughness of the coatings increased with increase in sodium borohydride concentration but decreased slightly with increase in nickel chloride concentration. Friction and wear characteristics are found to increase with surface roughness which occurs due to increased boron content. Surface hardness and scratch hardness are also seen to vary with coating bath parameters.


Sign in / Sign up

Export Citation Format

Share Document