The assessment of rill irrigation and perforated pipes for Lowland paddy rice under the system of rice intensification (SRI)

Author(s):  
Hsin-Piao Chiu ◽  
Yi-Lung Yeh ◽  
Samkele S. Tfwala ◽  
Gcina Mavuso ◽  
Ching-Nuo Chen
2019 ◽  
Vol 10 (02) ◽  
pp. 121-130
Author(s):  
Mercy Kangai Kathia ◽  
Bancy Mati ◽  
Jackline Ndiiri ◽  
Raphael Wanjogu

Author(s):  
Trần Minh Quang

Mục đích chính của nghiên cứu này là xác định được lượng phân bón Bokashi than thích hợp nhất đối với giống lúa H1 theo phương thức thâm canh lúa cải tiến SRI (System of Rice Intensification) góp phần đưa ra quy trình thâm canh giống lúa H1 ở Thừa Thiên Huế. Kết quả nghiên cứu cho thấy trong điều kiện vụ Đông Xuân ở Thừa Thiên Huế giống lúa H1 sinh trưởng phát triển tốt, mang lại hiệu quả cao nhất khi sử dụng mức 5 tấn phân hữu cơ Bokashi than/ha. Khi bón ở mức này đã tăng khả năng cải thiện tính chất đất ở cả 3 mặt: lý tính, hóa tính và sinh tính.


2009 ◽  
Vol 45 (3) ◽  
pp. 275-286 ◽  
Author(s):  
LIMEI ZHAO ◽  
LIANGHUAN WU ◽  
YONGSHAN LI ◽  
XINGHUA LU ◽  
DEFENG ZHU ◽  
...  

SUMMARYField experiments were conducted in 2005 and 2006 to investigate the impacts of alternative rice cultivation systems on grain yield, water productivity, N uptake and N use efficiency (ANUE, agronomic N use efficiency; PFP, partial factor productivity of applied N). The trials compared the practices used with the system of rice intensification (SRI) and traditional flooding (TF). The effects of different N application rates (0, 80, 160 and 240 kg ha−1) and of N rates interacting with the cultivation system were also evaluated. Resulting grain yields with SRI ranged from 5.6 to 7.3 t ha−1, and from 4.1 to 6.4 t ha−1 under TF management. On average, grain yields under SRI were 21% higher in 2005 and 22% higher in 2006 than with TF. Compared with TF, SRI plots had higher harvest index across four fertilizer N rates in both years. However, there was no significance difference in above-ground biomass between two cultivation systems in either year. ANUE was increased significantly under SRI at 80 kg N ha−1 compared with TF, while at higher N application rates, ANUE with SRI was significantly lower than TF. Compared with TF, PFP under SRI was higher across all four N rates in both years, although the difference at 240 kg N ha−1 was not significant. As N rate increased, the ANUE and PFP under both SRI and TF significantly decreased. Reduction in irrigation water use with SRI was 40% in 2005 and 47% in 2006, and water use efficiency, both total and from irrigation, were significantly increased compared to TF. With both SRI and TF, the highest N application was associated with decreases in grain yield, N use efficiency and water use efficiency. This is an important finding given current debates whether N application rates in China are above the optimum, especially considering consequences for soil and water resources. Cultivation system, N rates and their interactions all produced significant differences in this study. Results confirmed that optimizing fertilizer N application rates under SRI is important to increase yield, N use efficiency and water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document