Oncoid-dwelling foraminifera from Late Jurassic shallow-water carbonates of the Northern Calcareous Alps (Austria and Germany)

Facies ◽  
2008 ◽  
Vol 55 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Felix Schlagintweit ◽  
Hans-Jürgen Gawlick
Author(s):  
Timotheus Martin Christoph Steiner ◽  
Hans-Jürgen Gawlick ◽  
Frank Melcher ◽  
Felix Schlagintweit

AbstractIn shallow-water limestones of the Plassen Formation in the Tirolic nappe of the Northern Calcareous Alps, bauxite was formed on karstified and tilted platform margin grainstones to boundstones around the ?Kimmeridgian/Tithonian boundary, or in the Early Tithonian as proven by Protopeneroplis striata Weynschenk, Labyrinthina mirabilis Weynschenk, and Salpingoporella pygmaea Gümbel. The platform established on top of the obducted ophiolite nappe stack. The onset of unroofing at the Kimmeridgian/Tithonian boundary exposed ophiolites to weathering, forming laterites, and bauxites. The weathered ophiolitic material was shed on the tilted, emerged, and karstified platform, where the bauxite accumulated. Continued subsidence led to flooding, and a Tithonian transgressive carbonate sequence sealed the bauxites. XRD analysis of the bauxite yields a composition of mainly boehmite with hematite and some berthierine, kaolinite, and chromite. SEM analysis verified magnetite, hematite, rutile, chromite, zircon, ferropseudobrookite, ilmenite, monazite, xenotime, and garnet distributed in pisoids and within the matrix. The pisoids reach a millimeter in size and partly show cores of older, larger pisoids. The composition of the chromites indicates an ophiolitic origin. Geochemical examination using major- and trace elements points to a mafic andesitic to basaltic parent material contaminated with highly fractionated rocks from an island arc. Formation of Early Tithonian bauxites in shallow-water limestones confirms Middle to Early Late Jurassic ophiolite obduction. This was followed by uplift and unroofing of the orogen from the Kimmeridgian/Tithonian boundary onwards after a period of relative tectonic quiescence with an onset of carbonate platforms during the Kimmeridgian on top of the nappe stack and the obducted Neo-Tethys ophiolites.


2009 ◽  
Vol 83 (5) ◽  
pp. 783-793 ◽  
Author(s):  
B. Senowbari-Daryan ◽  
G. D. Stanley

Stromatomorpha californica Smith is a massive, calcified, tropical to subtropical organism of the Late Triassic that produced small biostromes and contributed in building some reefs. It comes from the displaced terranes of Cordilleran North America (Eastern Klamath terrane, Alexander terrane, and Wrangellia). This shallow-water organism formed small laminar masses and sometimes patch reefs. It was first referred to the order Spongiomorphidae but was considered to be a coral. Other affinities that have been proposed include hydrozoan, stomatoporoid, sclerosponge, and chambered sponge. Part of the problem was diagenesis that resulted in dissolution of the siliceous spicules and/or replaced them with calcite. Well-preserved dendroclone spicules found during study of newly discovered specimens necessitate an assignment of Stromatomorpha californica to the demosponge order Orchocladina Rauff. Restudy of examples from the Northern Calcareous Alps extends the distribution of this species to the Tethys, where it was an important secondary framework builder in Upper Triassic (Norian-Rhaetian) reef complexes. Revisions of Stromatomorpha californica produce much wider pantropical distribution, mirroring paleogeographic patterns revealed for other tropical Triassic taxa. Review of Liassic material from the Jurassic of Morocco, previously assigned to Stromatomorpha californica Smith var. columnaris Le Maitre, cannot be sustained. Species previously included in Stromatomorpha are: S. stylifera Frech (type species, Rhaetian), S. actinostromoides Boiko (Norian), S. californica Smith (Norian), S. concescui Balters (Ladinian-Carnian), S. pamirica Boiko (Norian), S. rhaetica Kühn (Rhaetian), S. stromatoporoides Frech, and S. tenuiramosa Boiko (Norian). Stromatomorpha rhaetica Kühn described from the Rhaetian of Vorarlberg, Austria shows no major difference from S. californica. An example described as S. oncescui Balters from the Ladinian-Carnian of the Rarau Mountains, Romania, is very similar to S. californica in exhibiting similar spicule types. However, because of the greater distance between individual pillars, horizontal layers, and the older age, S. oncescui is retained as a separate species. The net-like and regular skeleton of Spongiomorpha sanpozanensis Yabe and Sugiyama, from the Upper Triassic of Sambosan (Tosa, Japan), suggests a closer alliance with Stromatomorpha, and this taxon possibly could be the same as S. californica.


2015 ◽  
Vol 66 (6) ◽  
pp. 473-487 ◽  
Author(s):  
Hans-Jürgen Gawlick ◽  
Roman Aubrecht ◽  
Felix Schlagintweit ◽  
Sigrid Missoni ◽  
Dušan Plašienka

Abstract The causes for the Middle to Late Jurassic tectonic processes in the Northern Calcareous Alps are still controversially discussed. There are several contrasting models for these processes, formerly designated “Jurassic gravitational tectonics”. Whereas in the Dinarides or the Western Carpathians Jurassic ophiolite obduction and a Jurassic mountain building process with nappe thrusting is widely accepted, equivalent processes are still questioned for the Eastern Alps. For the Northern Calcareous Alps, an Early Cretaceous nappe thrusting process is widely favoured instead of a Jurassic one, obviously all other Jurassic features are nearly identical in the Northern Calcareous Alps, the Western Carpathians and the Dinarides. In contrast, the Jurassic basin evolutionary processes, as best documented in the Northern Calcareous Alps, were in recent times adopted to explain the Jurassic tectonic processes in the Carpathians and Dinarides. Whereas in the Western Carpathians Neotethys oceanic material is incorporated in the mélanges and in the Dinarides huge ophiolite nappes are preserved above the Jurassic basin fills and mélanges, Jurassic ophiolites or ophiolitic remains are not clearly documented in the Northern Calcareous Alps. Here we present chrome spinel analyses of ophiolitic detritic material from Kimmeridgian allodapic limestones in the central Northern Calcareous Alps. The Kimmeridgian age is proven by the occurrence of the benthic foraminifera Protopeneroplis striata and Labyrinthina mirabilis, the dasycladalean algae Salpingoporella pygmea, and the alga incertae sedis Pseudolithocodium carpathicum. From the geochemical composition the analysed spinels are pleonastes and show a dominance of Al-chromites (Fe3+–Cr3+–Al3+ diagram). In the Mg/(Mg+ Fe2+) vs. Cr/(Cr+ Al) diagram they can be classified as type II ophiolites and in the TiO2 vs. Al2O3 diagram they plot into the SSZ peridotite field. All together this points to a harzburgite provenance of the analysed spinels as known from the Jurassic suprasubduction ophiolites well preserved in the Dinarides/Albanides. These data clearly indicate Late Jurassic erosion of obducted ophiolites before their final sealing by the Late Jurassic–earliest Cretaceous carbonate platform pattern.


Sign in / Sign up

Export Citation Format

Share Document