scholarly journals Palaeoecological analysis of maximum flooding zones from the Tithonian (Upper Jurassic) of the Kachchh Basin, western India

Facies ◽  
2020 ◽  
Vol 67 (1) ◽  
Author(s):  
Franz T. Fürsich ◽  
Matthias Alberti ◽  
Dhirendra K. Pandey

AbstractThe siliciclastic Jhuran Formation of the Kachchh Basin, a rift basin bordering the Malagasy Seaway, documents the filling of the basin during the late syn-rift stage. The marine, more than 700-m-thick Tithonian part of the succession in the western part of the basin is composed of highly asymmetric transgressive–regressive cycles and is nearly unfossiliferous except for two intervals, the Lower Tithonian Hildoglochiceras Bed (HB) and the upper Lower Tithonian to lowermost Cretaceous Green Ammonite Beds (GAB). Both horizons represent maximum flooding zones (MFZ) and contain a rich fauna composed of ammonites and benthic macroinvertebrates. Within the HB the benthic assemblages change, concomitant with an increase in the carbonate content, from the predominantly infaunal “Lucina” rotundata to the epifaunal Actinostreon marshii and finally to the partly epifaunal, partly infaunal Eoseebachia sowerbyana assemblage. The Green Ammonite Beds are composed of three highly ferruginous beds, which are the MFZ of transgressive–regressive cycles forming the MFZ of a 3rd-order depositional sequence. The GAB are highly ferruginous, containing berthieroid ooids and grains. GAB I is characterized by the reworked Gryphaea moondanensis assemblage, GAB II by an autochthonous high-diversity assemblage dominated by the brachiopods Acanthorhynchia multistriata and Somalithyris lakhaparensis, whereas GAB III is devoid of fossils except for scarce ammonites. The GAB are interpreted to occupy different positions along an onshore–offshore transect with increasing condensation offshore. Integrated analyses of sedimentological, taphonomic, and palaeoecological data allow to reconstruct, in detail, the sequence stratigraphic architecture of sedimentary successions and to evaluate their degree of faunal condensation.

2017 ◽  
Vol 466 ◽  
pp. 406-415
Author(s):  
Franz T. Fürsich ◽  
Matthias Alberti ◽  
Dhirendra K. Pandey ◽  
Jyotsana Rai

Geologos ◽  
2018 ◽  
Vol 24 (2) ◽  
pp. 137-150 ◽  
Author(s):  
Jaquilin K. Joseph ◽  
Satish J. Patel

Abstract Ancient deltaic facies are difficult to differentiate from tidally influenced shallow-marine facies. The Wagad Sandstone Formation of the Wagad Highland (eastern Kachchh Basin) is typified by offshore and deltaic facies with sedimentary characteristics that represent different conditions of hydrodynamics and related depositional processes. The study area, the Adhoi Anticline, constitutes a ~154-m-thick, shale-dominated sequence with progressive upward intercalations of bioturbated micritic sandstone and quartz arenite. Two thick Astarte beds (sandy allochemic limestone), with an erosional base and gravel blanketing, illustrate tidal amplification and high-energy stochastic events such as storms. Sedimentological characteristics document three depositional facies: an offshore, shale-dominated sequence prograding to proximal prodeltaic micritic sandstone and quartz arenite with sandy allochemic limestones, further prograding to mouth bars and abandoned channel deposits. The Wagad Sandstone Formation displays depositional environmental conditions that are dissimilar from those of coeval deposits in Kachchh sub-basins as well as on regional and global scales. This is attributed to a reactivation of the Kachchh Mainland and South Wagad faults which resulted in detachment and uplift of the Wagad block which then experienced prograding deltaic conditions.


Sign in / Sign up

Export Citation Format

Share Document