sedimentary characteristics
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 133)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Siqi Zhang ◽  
Hanchao Jiang ◽  
Jiawei Fan ◽  
Hongyan Xu ◽  
Wei Shi ◽  
...  

Tectonic and climatic process controlling gravel accumulation in tectonically active regions is the subject of active debate. In this study, the formation mechanism of a gravel layer in the Diexi lacustrine section, eastern Tibetan Plateau, was investigated using mutually validated dating methods and detailed analysis of sedimentary processes. Optically stimulated luminescence (OSL) and accelerator mass spectrometry (AMS) 14C dating show that the gravel layer in the Diexi section accumulated at approximately 16.79 ka BP. The sedimentary characteristics of the gravel layer and the contact between upper and lower strata indicate that the formation of the Diexi gravel layer was triggered by an earthquake rather than by a debris flow caused by torrential rain. And the result based on the intensity attenuation model are consistent with the characteristics of frequent large earthquakes in Diexi area. Detailed analysis of satellite images and sedimentary characteristics of the gravel layer provide evidence for an ancient landslide, which may be related to the gravel layer at Muer village (to the north of the Diexi section). Overall, this study reconstructs a gravel event at approximately 16.79 ka BP and has important theoretical and practical significance for understanding the formation mechanism of gravel deposits and analysing seismic events through gravel accumulation.


2021 ◽  
pp. 1-50
Author(s):  
Zhiyuan Lu ◽  
Zhiliang He ◽  
Shizhong Ma ◽  
Yu He

The Lower Permian He 8 Member (P1h8) in the Ordos Basin is a typical producing zone of tight lithologic gas reservoirs. Analyses of sedimentary characteristics, electrofacies, and sand-body distributions of P1h8, conducted on modern fluvial deposits, outcrops, cores, and well logs, revealed that braided rivers that developed in the Lower P1h8 and Upper P1h8 are characterized by meandering river. Within these fluvial deposits, the procedure consists of analyzing high-resolution sequence stratigraphy and sedimentary dynamics defined from calibrated logging curve signatures and depositional studies. According to modern and ancient fluvial deposits, we have developed a process-based sedimentary conceptual model for interpreting and predicting the distribution and geometries of sand bodies in braided and meandering deposits. The main sand body of the braided river system was bars and channel fill deposits. The braided river sand bodies are distributed over multiple vertical superimpositions and overlapping horizontal connections. The meandering river sand bodies are mainly point-bar deposits, which are bead-shaped and exhibit scattered development in the vertical direction. This comparison indicates that there were significant differences between braided and meandering deposystems. The sand bodies in the Lower P1h8 were multidirectionally connected and primarily distributed in a stacked pattern. In contrast, the sand bodies in the Upper P1h8 were distributed in an isolated manner, and fine grains (mud and silt) were deposited between the sand bodies with poor connectivity. We interpreted the fluvial deposits that control the distributions of the sand body of the He8 Member in the eastern Sulige gas field and constructed a corresponding prediction model of a braided-meandering reservoir. This model will promote understanding of the extent of fluvial deposits and sand-body distribution of P1h8, thus elucidating hydrocarbon-bearing sand units of the Ordos Basin for future exploration.


2021 ◽  
Vol 9 ◽  
Author(s):  
Stapana Kongsen ◽  
Sumet Phantuwongraj ◽  
Montri Choowong ◽  
Sakonvan Chawchai ◽  
Nikhom Chaiwongsaen ◽  
...  

Sedimentary evidence of storms and fluvial floods (FFs) is crucial for a better understanding of such events in coastal zones. In this study, we analyzed the sedimentary characteristics of the coastal storm and FF deposits at the Hoa Duan barrier, Thua Thien Hue, central Vietnam. Analyses of the sedimentary structures and properties (grain size distribution, composition, roundness, and sphericity) and loss on ignition revealed that the storm sediments were comprised of coarser grains with a low organic and carbonated content, and with sedimentary structures, including parallel and inclined landward lamination, multiple sets of normal and reverse grading, mud rip-up clasts, and sharp and erosional contacts (both top and bottom) with finer-grain layers. Conversely, the FF sediments had only fine to very fine grains, with dominant high organic and carbonate contents, and only exhibited sedimentary structures of sharp erosional top and bottom contacts with coarser-grained layers. The clearest differentiation to distinguish coastal storm layers from inland FF layers was obtained by plotting the mean grain size against the sorting. The results of optically stimulated luminescence dating suggested that two storm layers and one FF layer were deposited during the last 130 ± 10 years. Moreover, two layers were deposited by storms and one by a FF prior to that (>130 ± 10 years). The identification of the sedimentary diagnostic key of these two hazards can help to improve the understanding of the geomorphological evolution of the studied site and the other parts of this coastal region in order to remind the coastal community to prepare for future coastal hazards well.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wentian Mi ◽  
Xueyuan Qi ◽  
Yan Shang ◽  
Xu Kong ◽  
Zifu Hu

The mudstone and marl from western Hoh Xil basin, located in Tibet of the west of China, were deposited in Tertiary lacustrine environment. Investigation of organic geochemistry, sedimentary characteristics, and 13C in kerogen was conducted to analyze the sedimentary environment, biomarkers, paleoclimate, and source of organic matter during deposition. The Cenozoic sedimentary facies of the basin included upper lacustrine facies and lower alluvial fan facies, which belong to Miocene Wudaoliang Formation and Oligocene Yaxicuo Group, respectively. The Miocene marl-sandstone-mudstone from Wudaoliang Formation was analyzed. Maceral composition was dominated by amorphous organic matter. T max values indicated that the mudstones were thermally immature-low maturity with mainly type II and III organic matter, while organic matter in marlite belongs mainly to type I-II1 with low maturity-maturity stage. The biomarkers showed the characteristics of odd-over-even predominance of long-chain n-alkanes, higher proportion of C27 sterane in most of the samples, heavy δ13Corg composition, low Pr/Ph ratios (0.11-0.36), and so on. Organic geochemistry indicated that the organic matter originated from bacteria, algae, and higher plants. The rocks were formed in reducing environments with stratified water column and high productivity. The paleoclimate became more humid during depositional stage in the western Hoh Xil basin.


Sign in / Sign up

Export Citation Format

Share Document