Sine trigonometric operational laws and its based Pythagorean fuzzy aggregation operators for group decision-making process

Author(s):  
Harish Garg
Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 440 ◽  
Author(s):  
Arshad Khan ◽  
Saleem Abdullah ◽  
Muhammad Shakeel ◽  
Faisal Khan ◽  
Noor Amin ◽  
...  

In this article, we proposed new Pythagorean trapezoidal uncertain linguistic fuzzy aggregation information—namely, the Pythagorean trapezoidal uncertain linguistic fuzzy Einstein weighted averaging (PTULFEWA) operator, the Pythagorean trapezoidal uncertain linguistic fuzzy Einstein ordered weighted averaging (PTULFEOWA) operator, and the Pythagorean trapezoidal uncertain linguistic fuzzy Einstein hybrid weighted averaging (PTULFEHWA) operator—using the Einstein operational laws. We studied some important properties of the suggested aggregation operators and showed that the PTULFEHWA is more general than the other proposed operators, which simplifies these aggregation operators. Furthermore, we presented a multiple attribute group decision making (MADM) process for the proposed aggregation operators under the Pythagorean trapezoidal uncertain linguistic fuzzy (PTULF) environment. A numerical example was constructed to determine the effectiveness and practicality of the proposed approach. Lastly, a comparative analysis was performed of the presented approach with existing approaches to show that the proposed method is consistent and provides more information that may be useful for complex problems in the decision-making process.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 413 ◽  
Author(s):  
Huanhuan Jin ◽  
Shahzaib Ashraf ◽  
Saleem Abdullah ◽  
Muhammad Qiyas ◽  
Mahwish Bano ◽  
...  

The key objective of the proposed work in this paper is to introduce a generalized form of linguistic picture fuzzy set, so-called linguistic spherical fuzzy set (LSFS), combining the notion of linguistic fuzzy set and spherical fuzzy set. In LSFS we deal with the vague and defective information in decision making. LSFS is characterized by linguistic positive, linguistic neutral and linguistic negative membership degree which satisfies the conditions that the square sum of its linguistic membership degrees is less than or equal to 1. In this paper, we investigate the basic operations of linguistic spherical fuzzy sets and discuss some related results. We extend operational laws of aggregation operators and propose linguistic spherical fuzzy weighted averaging and geometric operators based on spherical fuzzy numbers. Further, the proposed aggregation operators of linguistic spherical fuzzy number are applied to multi-attribute group decision-making problems. To implement the proposed models, we provide some numerical applications of group decision-making problems. In addition, compared with the previous model, we conclude that the proposed technique is more effective and reliable.


2019 ◽  
Vol 24 (10) ◽  
pp. 7319-7334 ◽  
Author(s):  
Muhammad Shakeel ◽  
Saleem Abdullah ◽  
Muhammad Aslam ◽  
Muhammad Jamil

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1489
Author(s):  
Shahzad Faizi ◽  
Wojciech Sałabun ◽  
Nisbha Shaheen ◽  
Atiq ur Rehman ◽  
Jarosław Wątróbski

Ambiguous and uncertain facts can be handled using a hesitant 2-tuple linguistic set (H2TLS), an important expansion of the 2-tuple linguistic set. The vagueness and uncertainty of data can be grabbed by using aggregation operators. Therefore, aggregation operators play an important role in computational processes to merge the information provided by decision makers (DMs). Furthermore, the aggregation operator is a potential mechanism for merging multisource data which is synonymous with cooperative preference. The aggregation operators need to be studied and analyzed from various perspectives to represent complex choice situations more readily and capture the diverse experiences of DMs. In this manuscript, we propose some valuable operational laws for H2TLS. These new operational laws work through the individual aggregation of linguistic words and the collection of translation parameters. We introduced a hesitant 2-tuple linguistic weighted average (H2TLWA) operator to solve multi-criteria group decision-making (MCGDM) problems. We also define hesitant 2-tuple linguistic Bonferroni mean (H2TLBM) operator, hesitant 2-tuple linguistic geometric Bonferroni mean (H2TLGBM) operator, hesitant 2-tuple linguistic Heronian mean (H2TLHM) operator, and a hesitant 2-tuple linguistic geometric Heronian mean (H2TLGHM) operator based on the novel operational laws proposed in this paper. We define the aggregation operators for addition, subtraction, multiplication, division, scalar multiplication, power and complement with their respective properties. An application example and comparison analysis were examined to show the usefulness and practicality of the work.


Sign in / Sign up

Export Citation Format

Share Document