scholarly journals A hybrid data envelopment analysis—artificial neural network prediction model for COVID-19 severity in transplant recipients

Author(s):  
Ignacio Revuelta ◽  
Francisco J. Santos-Arteaga ◽  
Enrique Montagud-Marrahi ◽  
Pedro Ventura-Aguiar ◽  
Debora Di Caprio ◽  
...  

AbstractIn an overwhelming demand scenario, such as the SARS-CoV-2 pandemic, pressure over health systems may outburst their predicted capacity to deal with such extreme situations. Therefore, in order to successfully face a health emergency, scientific evidence and validated models are needed to provide real-time information that could be applied by any health center, especially for high-risk populations, such as transplant recipients. We have developed a hybrid prediction model whose accuracy relative to several alternative configurations has been validated through a battery of clustering techniques. Using hospital admission data from a cohort of hospitalized transplant patients, our hybrid Data Envelopment Analysis (DEA)—Artificial Neural Network (ANN) model extrapolates the progression towards severe COVID-19 disease with an accuracy of 96.3%, outperforming any competing model, such as logistic regression (65.5%) and random forest (44.8%). In this regard, DEA-ANN allows us to categorize the evolution of patients through the values of the analyses performed at hospital admission. Our prediction model may help guiding COVID-19 management through the identification of key predictors that permit a sustainable management of resources in a patient-centered model.

2017 ◽  
Vol 26 (2) ◽  
pp. 203 ◽  
Author(s):  
Rakesh D. Raut ◽  
Sachin S. Kamble ◽  
Manoj G. Kharat ◽  
Hemendu Joshi ◽  
Chirag Singhal ◽  
...  

2019 ◽  
Vol 142 (5) ◽  
Author(s):  
Byeongho Yu ◽  
Dongsu Kim ◽  
Heejin Cho ◽  
Pedro Mago

Abstract Thermal load prediction is a key part of energy system management and control in buildings, and its accuracy plays a critical role to improve building energy performance and efficiency. Regarding thermal load prediction, various types of prediction model have been considered and studied, such as physics-based, statistical, and machine learning models. Physical models can be accurate but require extended lead time for model development. Statistical models are relatively simple to develop and require less computation time, but they may not provide accurate results for complex energy systems with intricate nonlinear dynamic behaviors. This study proposes an artificial neural network (ANN) model, one of the prevalent machine learning methods to predict building thermal load, combining with the concept of nonlinear autoregressive with exogenous inputs (NARX). NARX-ANN prediction model is distinguished from typical ANN models because the NARX concept can address nonlinear system behaviors effectively based on its recurrent architectures and time indexing features. To examine the suitability and validity of NARX-ANN model for building thermal load prediction, a case study is carried out using the field data of an academic campus building at Mississippi State University (MSU). Results show that the proposed NARX-ANN model can provide an accurate and robust prediction performance and effectively address nonlinear system behaviors in the prediction.


2011 ◽  
Vol 188 ◽  
pp. 535-541
Author(s):  
Xiao Jiang Cai ◽  
Z.Q. Liu ◽  
Q.C. Wang ◽  
Shu Han ◽  
Qing Long An ◽  
...  

Surface roughness is a significant aspect of the surface integrity concept. It is efficient to predict the surface roughness in advance by a prediction model. In this study, artificial neural network is used to model the surface roughness in turning of free machining steel 1215. The inputs considered in the prediction ANN model were cutting speed, feed rate and depth of cut, and the output was Ra. Several feed-forward neural networks with different architectures were compared in terms of prediction accuracy, and then the best prediction model, a 3-4-1-1 ANN was capable of predicting Ra with a mean squared error 5.46%, was presented.


Sign in / Sign up

Export Citation Format

Share Document