Independent Axiomatizability of Quasivarieties of Torsion-Free Nilpotent Groups

2021 ◽  
Author(s):  
A. I. Budkin
1992 ◽  
Vol 35 (3) ◽  
pp. 390-399 ◽  
Author(s):  
Goansu Kim ◽  
C. Y. Tang

AbstractIn general polygonal products of finitely generated torsion-free nilpotent groups amalgamating cyclic subgroups need not be residually finite. In this paper we prove that polygonal products of finitely generated torsion-free nilpotent groups amalgamating maximal cyclic subgroups such that the amalgamated cycles generate an isolated subgroup in the vertex group containing them, are residually finite. We also prove that, for finitely generated torsion-free nilpotent groups, if the subgroups generated by the amalgamated cycles have the same nilpotency classes as their respective vertex groups, then their polygonal product is residually finite.


1995 ◽  
Vol 117 (3) ◽  
pp. 431-438 ◽  
Author(s):  
Charles Cassidy ◽  
Caroline Lajoie

AbstractIn this paper, we characterize the genus of an arbitrary torsion-free finitely generated nilpotent group of class two and of Hirsch length six by means of a finite number of arithmetical invariants. An algorithm which permits the enumeration of all possible genera that can occur under the conditions above is also given.


Author(s):  
Tsuyoshi Kajiwara

AbstractLet G be a countable torsion free finitely generated nilpotent group. Then the Fourier transform can be considered as a map from the space of bounded degree 1 random operators to the Fourier algebra A(G). In this paper, we recover the matrix elements of a positive random variable from the corresponding positive definite function in A(G) for such a group.


1976 ◽  
Vol 4 (6) ◽  
pp. 533-560 ◽  
Author(s):  
Benjamin Baumslag ◽  
Frank Levin

1985 ◽  
Vol 50 (3) ◽  
pp. 743-772 ◽  
Author(s):  
Fritz Grunewald ◽  
Daniel Segal

This paper is a continuation of our previous work in [12]. The results, and some applications, have been described in the announcement [13]; it may be useful to discuss here, a little more fully, the nature and purpose of this work.We are concerned basically with three kinds of algorithmic problem: (1) isomorphism problems, (2) “orbit problems”, and (3) “effective generation”.(1) Isomorphism problems. Here we have a class of algebraic objects of some kind, and ask: is there a uniform algorithm for deciding whether two arbitrary members of are isomorphic? In most cases, the answer is no: no such algorithm exists. Indeed this has been one of the most notable applications of methods of mathematical logic in algebra (see [26, Chapter IV, §4] for the case where is the class of all finitely presented groups). It turns out, however, that when consists of objects which are in a certain sense “finite-dimensional”, then the isomorphism problem is indeed algorithmically soluble. We gave such algorithms in [12] for the following cases: = {finitely generated nilpotent groups}; = {(not necessarily associative) rings whose additive group is finitely generated}; = {finitely Z-generated modules over a fixed finitely generated ring}.Combining the methods of [12] with his own earlier work, Sarkisian has obtained analogous results with the integers replaced by the rationals: in [20] and [21] he solves the isomorphism problem for radicable torsion-free nilpotent groups of finite rank and for finite-dimensional Q-algebras.


1968 ◽  
Vol 8 (2) ◽  
pp. 322-326 ◽  
Author(s):  
Gilbert Baumslag

Let ℜk be the variety of all nilpotent groups of class at most k. The purpose of this note is to prove the following Theorem 1. Letbe a variety of groups containing ℜ2, let A and B be torsion-free abelian hopfian groups and let P be the free-product2 of A and B. If P is residually torsion-free nilpotent, then P is hopfian.


1955 ◽  
Vol 7 ◽  
pp. 169-187 ◽  
Author(s):  
S. A. Jennings

Introduction. In this paper we study the (discrete) group ring Γ of a finitely generated torsion free nilpotent group over a field of characteristic zero. We show that if Δ is the ideal of Γ spanned by all elements of the form G − 1, where G ∈ , thenand the only element belonging to Δw for all w is the zero element (cf. (4.3) below).


Sign in / Sign up

Export Citation Format

Share Document