scholarly journals Fourier inversion formula for discrete nilpotent groups

Author(s):  
Tsuyoshi Kajiwara

AbstractLet G be a countable torsion free finitely generated nilpotent group. Then the Fourier transform can be considered as a map from the space of bounded degree 1 random operators to the Fourier algebra A(G). In this paper, we recover the matrix elements of a positive random variable from the corresponding positive definite function in A(G) for such a group.

Author(s):  
Stefan Hollands

AbstractWe introduce a new approach to find the Tomita–Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo–Martin–Schwinger (KMS) condition. These features can be used to transform the problem to a Riemann–Hilbert problem on a covering of the complex plane cut along the regions, which is equivalent to an integral equation for the matrix elements of the modular Hamiltonian. Examples are considered.


Author(s):  
Mariusz Pawlak ◽  
Marcin Stachowiak

AbstractWe present general analytical expressions for the matrix elements of the atom–diatom interaction potential, expanded in terms of Legendre polynomials, in a basis set of products of two spherical harmonics, especially significant to the recently developed adiabatic variational theory for cold molecular collision experiments [J. Chem. Phys. 143, 074114 (2015); J. Phys. Chem. A 121, 2194 (2017)]. We used two approaches in our studies. The first involves the evaluation of the integral containing trigonometric functions with arbitrary powers. The second approach is based on the theorem of addition of spherical harmonics.


1977 ◽  
Vol 32 (8) ◽  
pp. 897-898 ◽  
Author(s):  
Y. K. Chan ◽  
B. S. Rao

Abstract The radial Schrödinger wave equation with Morse potential function is solved for HF molecule. The resulting vibration-rotation eigenfunctions are then used to compute the matrix elements of (r - re)n. These are combined with the experimental values of the electric dipole matrix elements to calculate the dipole moment coefficients, M 1 and M 2.


1983 ◽  
Vol 26 ◽  
Author(s):  
Aaron Barkatt ◽  
William Sousanpour ◽  
Alisa Barkatt ◽  
Morad A. Boroomand ◽  
Pedro B. Macedo

ABSTRACTLeach tests carried out on SRL TDS-131 Defense Waste Class indicate that at high flow rates the controlling mechanism is simple corrosion. The matrix elements (Si, Al) are leached out at rates similar to those of the leaching of the alkalis and of boron, and the leaching process is nearly linear with time. At slow flow rates (below 1 m/yr) leaching becomes controlled by the build-up of a protective layer. Al and most of the Si remain in the leached surface layer. The leach rates decrease in the course of the test before leveling off at constant values which are almost inversely proportional to the contact time, indicating that leachate concentrations have become solubility-limited. The low concentrations observed at this stage indicate the formation of alteration products.


1992 ◽  
Vol 35 (3) ◽  
pp. 390-399 ◽  
Author(s):  
Goansu Kim ◽  
C. Y. Tang

AbstractIn general polygonal products of finitely generated torsion-free nilpotent groups amalgamating cyclic subgroups need not be residually finite. In this paper we prove that polygonal products of finitely generated torsion-free nilpotent groups amalgamating maximal cyclic subgroups such that the amalgamated cycles generate an isolated subgroup in the vertex group containing them, are residually finite. We also prove that, for finitely generated torsion-free nilpotent groups, if the subgroups generated by the amalgamated cycles have the same nilpotency classes as their respective vertex groups, then their polygonal product is residually finite.


Sign in / Sign up

Export Citation Format

Share Document