scholarly journals Parameterised complexity of model checking and satisfiability in propositional dependence logic

Author(s):  
Yasir Mahmood ◽  
Arne Meier

AbstractDependence Logic was introduced by Jouko Väänänen in 2007. We study a propositional variant of this logic (PDL) and investigate a variety of parameterisations with respect to central decision problems. The model checking problem (MC) of PDL is NP-complete (Ebbing and Lohmann, SOFSEM 2012). The subject of this research is to identify a list of parameterisations (formula-size, formula-depth, treewidth, team-size, number of variables) under which MC becomes fixed-parameter tractable. Furthermore, we show that the number of disjunctions or the arity of dependence atoms (dep-arity) as a parameter both yield a paraNP-completeness result. Then, we consider the satisfiability problem (SAT) which classically is known to be NP-complete as well (Lohmann and Vollmer, Studia Logica 2013). There we are presenting a different picture: under team-size, or dep-arity SAT is paraNP-complete whereas under all other mentioned parameters the problem is FPT. Finally, we introduce a variant of the satisfiability problem, asking for a team of a given size, and show for this problem an almost complete picture.

2014 ◽  
Vol 51 ◽  
pp. 555-577 ◽  
Author(s):  
D. Cohen ◽  
J. Crampton ◽  
A. Gagarin ◽  
G. Gutin ◽  
M. Jones

The Workflow Satisfiability Problem (WSP) is a problem of practical interest that arises whenever tasks need to be performed by authorized users, subject to constraints defined by business rules. We are required to decide whether there exists a plan - an assignment of tasks to authorized users - such that all constraints are satisfied. It is natural to see the WSP as a subclass of the Constraint Satisfaction Problem (CSP) in which the variables are tasks and the domain is the set of users. What makes the WSP distinctive is that the number of tasks is usually very small compared to the number of users, so it is appropriate to ask for which constraint languages the WSP is fixed-parameter tractable (FPT), parameterized by the number of tasks. This novel approach to the WSP, using techniques from CSP, has enabled us to design a generic algorithm which is FPT for several families of workflow constraints considered in the literature. Furthermore, we prove that the union of FPT languages remains FPT if they satisfy a simple compatibility condition. Lastly, we identify a new FPT constraint language, user-independent constraints, that includes many of the constraints of interest in business processing systems. We demonstrate that our generic algorithm has provably optimal running time O*(2^(klog k)), for this language, where k is the number of tasks.


2012 ◽  
Vol 186 ◽  
pp. 1-37 ◽  
Author(s):  
Wolfgang Dvořák ◽  
Reinhard Pichler ◽  
Stefan Woltran

2009 ◽  
Vol 38 (5) ◽  
pp. 2007-2020 ◽  
Author(s):  
Yngve Villanger ◽  
Pinar Heggernes ◽  
Christophe Paul ◽  
Jan Arne Telle

Author(s):  
Serge Gaspers ◽  
Joachim Gudmundsson ◽  
Michael Horton ◽  
Stefan Rümmele

2022 ◽  
Vol 69 (1) ◽  
pp. 1-46
Author(s):  
Édouard Bonnet ◽  
Eun Jung Kim ◽  
Stéphan Thomassé ◽  
Rémi Watrigant

Inspired by a width invariant defined on permutations by Guillemot and Marx [SODA’14], we introduce the notion of twin-width on graphs and on matrices. Proper minor-closed classes, bounded rank-width graphs, map graphs, K t -free unit d -dimensional ball graphs, posets with antichains of bounded size, and proper subclasses of dimension-2 posets all have bounded twin-width. On all these classes (except map graphs without geometric embedding) we show how to compute in polynomial time a sequence of d -contractions , witness that the twin-width is at most d . We show that FO model checking, that is deciding if a given first-order formula ϕ evaluates to true for a given binary structure G on a domain D , is FPT in |ϕ| on classes of bounded twin-width, provided the witness is given. More precisely, being given a d -contraction sequence for G , our algorithm runs in time f ( d ,|ϕ |) · |D| where f is a computable but non-elementary function. We also prove that bounded twin-width is preserved under FO interpretations and transductions (allowing operations such as squaring or complementing a graph). This unifies and significantly extends the knowledge on fixed-parameter tractability of FO model checking on non-monotone classes, such as the FPT algorithm on bounded-width posets by Gajarský et al. [FOCS’15].


Author(s):  
Robert Ganian ◽  
Andre Schidler ◽  
Manuel Sorge ◽  
Stefan Szeider

Treewidth and hypertree width have proven to be highly successful structural parameters in the context of the Constraint Satisfaction Problem (CSP). When either of these parameters is bounded by a constant, then CSP becomes solvable in polynomial time. However, here the order of the polynomial in the running time depends on the width, and this is known to be unavoidable; therefore, the problem is not fixed-parameter tractable parameterized by either of these width measures. Here we introduce an enhancement of tree and hypertree width through a novel notion of thresholds, allowing the associated decompositions to take into account information about the computational costs associated with solving the given CSP instance. Aside from introducing these notions, we obtain efficient theoretical as well as empirical algorithms for computing threshold treewidth and hypertree width and show that these parameters give rise to fixed-parameter algorithms for CSP as well as other, more general problems. We complement our theoretical results with experimental evaluations in terms of heuristics as well as exact methods based on SAT/SMT encodings.


2021 ◽  
Vol 13 (3) ◽  
pp. 1-16
Author(s):  
Fedor V. Fomin ◽  
Petr A. Golovach ◽  
Daniel Lokshtanov ◽  
Fahad Panolan ◽  
Saket Saurabh ◽  
...  

Parameterization above a guarantee is a successful paradigm in Parameterized Complexity. To the best of our knowledge, all fixed-parameter tractable problems in this paradigm share an additive form defined as follows. Given an instance ( I,k ) of some (parameterized) problem π with a guarantee g(I) , decide whether I admits a solution of size at least (or at most) k + g(I) . Here, g(I) is usually a lower bound on the minimum size of a solution. Since its introduction in 1999 for M AX SAT and M AX C UT (with g(I) being half the number of clauses and half the number of edges, respectively, in the input), analysis of parameterization above a guarantee has become a very active and fruitful topic of research. We highlight a multiplicative form of parameterization above (or, rather, times) a guarantee: Given an instance ( I,k ) of some (parameterized) problem π with a guarantee g(I) , decide whether I admits a solution of size at least (or at most) k · g(I) . In particular, we study the Long Cycle problem with a multiplicative parameterization above the girth g(I) of the input graph, which is the most natural guarantee for this problem, and provide a fixed-parameter algorithm. Apart from being of independent interest, this exemplifies how parameterization above a multiplicative guarantee can arise naturally. We also show that, for any fixed constant ε > 0, multiplicative parameterization above g(I) 1+ε of Long Cycle yields para-NP-hardness, thus our parameterization is tight in this sense. We complement our main result with the design (or refutation of the existence) of fixed-parameter algorithms as well as kernelization algorithms for additional problems parameterized multiplicatively above girth.


Sign in / Sign up

Export Citation Format

Share Document