Slow Manifold and Parameter Estimation for a Nonlocal Fast-Slow Dynamical System with Brownian Motion

2021 ◽  
Vol 41 (4) ◽  
pp. 1057-1080
Author(s):  
Hina Zulfiqar ◽  
Ziying He ◽  
Meihua Yang ◽  
Jinqiao Duan
Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2031
Author(s):  
Mario Abundo ◽  
Enrica Pirozzi

This paper is devoted to the estimation of the entropy of the dynamical system {Xα(t),t≥0}, where the stochastic process Xα(t) consists of the fractional Riemann–Liouville integral of order α∈(0,1) of a Gauss–Markov process. The study is based on a specific algorithm suitably devised in order to perform the simulation of sample paths of such processes and to evaluate the numerical approximation of the entropy. We focus on fractionally integrated Brownian motion and Ornstein–Uhlenbeck process due their main rule in the theory and application fields. Their entropy is specifically estimated by computing its approximation (ApEn). We investigate the relation between the value of α and the complexity degree; we show that the entropy of Xα(t) is a decreasing function of α∈(0,1).


2019 ◽  
Vol 20 (04) ◽  
pp. 2050023 ◽  
Author(s):  
Yong Chen ◽  
Nenghui Kuang ◽  
Ying Li

For an Ornstein–Uhlenbeck process driven by fractional Brownian motion with Hurst index [Formula: see text], we show the Berry–Esséen bound of the least squares estimator of the drift parameter based on the continuous-time observation. We use an approach based on Malliavin calculus given by Kim and Park [Optimal Berry–Esséen bound for statistical estimations and its application to SPDE, J. Multivariate Anal. 155 (2017) 284–304].


Fractals ◽  
1994 ◽  
Vol 02 (01) ◽  
pp. 81-94 ◽  
Author(s):  
RICCARDO MANNELLA ◽  
PAOLO GRIGOLINI ◽  
BRUCE J. WEST

Herein we develop a dynamical foundation for fractional Brownian motion. A clear relation is established between the asymptotic behavior of the correlation function and diffusion in a dynamical system. Then, assuming that scaling is applicable, we establish a connection between diffusion (either standard or anomalous) and the dynamical indicator known as the Hurst coefficient. We argue on the basis of numerical simulations that although we have been able to prove scaling only for "Gaussian" processes, our conclusions may well apply to a wider class of systems. On the other hand, systems exist for which scaling might not hold, so we speculate on the possible consequences of the various relations derived in the paper on such systems.


2013 ◽  
Vol 50 (02) ◽  
pp. 592-597 ◽  
Author(s):  
Yaozhong Hu ◽  
Chihoon Lee

We consider a drift parameter estimation problem when the state process is a reflected fractional Brownian motion (RFBM) with a nonzero drift parameter and the observation is the associated local time process. The RFBM process arises as the key approximating process for queueing systems with long-range dependent and self-similar input processes, where the drift parameter carries the physical meaning of the surplus service rate and plays a central role in the heavy-traffic approximation theory for queueing systems. We study a statistical estimator based on the cumulative local time process and establish its strong consistency and asymptotic normality.


Filomat ◽  
2018 ◽  
Vol 32 (6) ◽  
pp. 2219-2245
Author(s):  
Shahad Al-Azzawi ◽  
Jicheng Liu ◽  
Xianming Liu

The synchronization of stochastic differential equations (SDEs) driven by symmetric ?-stable process and Brownian Motion is investigated in pathwise sense. This coupled dynamical system is a new mathematical model, where one of the systems is driven by Gaussian noise, another one is driven by non- Gaussian noise. In this paper, we prove that the synchronization still persists for this coupled dynamical system. Examples and simulations are given.


Sign in / Sign up

Export Citation Format

Share Document