scholarly journals Deterministic Brownian motion: The effects of perturbing a dynamical system by a chaotic semi-dynamical system

2006 ◽  
Vol 422 (5) ◽  
pp. 167-222 ◽  
Author(s):  
M MACKEY ◽  
M TYRANKAMINSKA
Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2031
Author(s):  
Mario Abundo ◽  
Enrica Pirozzi

This paper is devoted to the estimation of the entropy of the dynamical system {Xα(t),t≥0}, where the stochastic process Xα(t) consists of the fractional Riemann–Liouville integral of order α∈(0,1) of a Gauss–Markov process. The study is based on a specific algorithm suitably devised in order to perform the simulation of sample paths of such processes and to evaluate the numerical approximation of the entropy. We focus on fractionally integrated Brownian motion and Ornstein–Uhlenbeck process due their main rule in the theory and application fields. Their entropy is specifically estimated by computing its approximation (ApEn). We investigate the relation between the value of α and the complexity degree; we show that the entropy of Xα(t) is a decreasing function of α∈(0,1).


Fractals ◽  
1994 ◽  
Vol 02 (01) ◽  
pp. 81-94 ◽  
Author(s):  
RICCARDO MANNELLA ◽  
PAOLO GRIGOLINI ◽  
BRUCE J. WEST

Herein we develop a dynamical foundation for fractional Brownian motion. A clear relation is established between the asymptotic behavior of the correlation function and diffusion in a dynamical system. Then, assuming that scaling is applicable, we establish a connection between diffusion (either standard or anomalous) and the dynamical indicator known as the Hurst coefficient. We argue on the basis of numerical simulations that although we have been able to prove scaling only for "Gaussian" processes, our conclusions may well apply to a wider class of systems. On the other hand, systems exist for which scaling might not hold, so we speculate on the possible consequences of the various relations derived in the paper on such systems.


Filomat ◽  
2018 ◽  
Vol 32 (6) ◽  
pp. 2219-2245
Author(s):  
Shahad Al-Azzawi ◽  
Jicheng Liu ◽  
Xianming Liu

The synchronization of stochastic differential equations (SDEs) driven by symmetric ?-stable process and Brownian Motion is investigated in pathwise sense. This coupled dynamical system is a new mathematical model, where one of the systems is driven by Gaussian noise, another one is driven by non- Gaussian noise. In this paper, we prove that the synchronization still persists for this coupled dynamical system. Examples and simulations are given.


2009 ◽  
Vol 09 (04) ◽  
pp. 613-634 ◽  
Author(s):  
YONG LIU ◽  
HUAIZHONG ZHAO

In this paper, we show that the stationary solution u(t, ω) of the differentiable random dynamical system U: ℝ+ × L2[0, 1] × Ω → L2[0, 1] generated by the stochastic Burgers' equation with large viscosity, denoted by ν, driven by a Brownian motion in L2[0, 1], is given by: u(t, ω) = U(t, Y(ω), ω) = Y(θ(t, ω)), where Y(ω) can be represented by the following integral equation: [Formula: see text] Here θ is the group of P-preserving ergodic transformations on the canonical probability space [Formula: see text] such that θ(t, ω)(s) = W(t + s) - W(t), where W is the L2[0, 1]-valued Brownian motion on the probability space [Formula: see text], Tν is the linear operator semigroup on L2[0, 1] generated by νΔ.


2010 ◽  
Vol 20 (09) ◽  
pp. 2761-2782 ◽  
Author(s):  
M. J. GARRIDO-ATIENZA ◽  
B. MASLOWSKI ◽  
B. SCHMALFUß

In this paper, the asymptotic behavior of stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H > 1/2 is studied. In particular, it is shown that the corresponding solutions generate a random dynamical system for which the existence and uniqueness of a random attractor is proved.


2021 ◽  
Vol 41 (4) ◽  
pp. 1057-1080
Author(s):  
Hina Zulfiqar ◽  
Ziying He ◽  
Meihua Yang ◽  
Jinqiao Duan

2021 ◽  
Vol 2087 (1) ◽  
pp. 012052
Author(s):  
Chun-Sheng Wang ◽  
Hong Ding ◽  
Ouyang Tong

Abstract In real life, many models and systems are affected by random phenomena. For this reason, experts and scholars propose to describe these stochastic processes with Brownian motion respectively. In this paper we consider a kind of stochastic Vollterra dynamical systems of nonconvolution type and give some new conditions to ensure that the zero solution is asymptotically stable in mean square by means of fixed point method. The theorems of asymptotically stability in mean square with a necessary conditions are proved. Some results of related papers are improved.


2011 ◽  
Vol 11 (02n03) ◽  
pp. 243-263 ◽  
Author(s):  
MIREIA BESALÚ ◽  
DAVID NUALART

In this paper we establish precise estimates for the supremum norm for the solution of a dynamical system driven by a Hölder continuous function of order between ⅓ and ½ using the techniques of fractional calculus. As an application we deduce the existence of moments for the solutions to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H ∈(⅓, ½) and we obtain an estimate for the supremum norm of the Malliavin derivative.


2007 ◽  
Vol 44 (02) ◽  
pp. 393-408 ◽  
Author(s):  
Allan Sly

Multifractional Brownian motion is a Gaussian process which has changing scaling properties generated by varying the local Hölder exponent. We show that multifractional Brownian motion is very sensitive to changes in the selected Hölder exponent and has extreme changes in magnitude. We suggest an alternative stochastic process, called integrated fractional white noise, which retains the important local properties but avoids the undesirable oscillations in magnitude. We also show how the Hölder exponent can be estimated locally from discrete data in this model.


1986 ◽  
Vol 23 (04) ◽  
pp. 893-903 ◽  
Author(s):  
Michael L. Wenocur

Brownian motion subject to a quadratic killing rate and its connection with the Weibull distribution is analyzed. The distribution obtained for the process killing time significantly generalizes the Weibull. The derivation involves the use of the Karhunen–Loève expansion for Brownian motion, special function theory, and the calculus of residues.


Sign in / Sign up

Export Citation Format

Share Document