The Nonemptiness and Compactness of Mild Solution Sets for Riemann-Liouville Fractional Delay Differential Variational Inequalities

2021 ◽  
Vol 41 (5) ◽  
pp. 1569-1578
Author(s):  
Yirong Jiang ◽  
Zhouchao Wei ◽  
Jingping Lu
2016 ◽  
Vol 172 (1) ◽  
pp. 56-69 ◽  
Author(s):  
Xing Wang ◽  
Ya-wei Qi ◽  
Chang-qi Tao ◽  
Yi-bin Xiao

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Nguyen Thi Van Anh

<p style='text-indent:20px;'>In this paper, we introduce and study a class of delay differential variational inequalities comprising delay differential equations and variational inequalities. We establish a sufficient condition for the existence of periodic solutions to delay differential variational inequalities. Based on some fixed point arguments, in both single-valued and multivalued cases, the solvability of initial value and periodic problems are proved. Furthermore, we study the conditional stability of periodic solutions to this systems.</p>


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 266 ◽  
Author(s):  
Savin Treanţă

A new class of differential variational inequalities (DVIs), governed by a variational inequality and an evolution equation formulated in infinite-dimensional spaces, is investigated in this paper. More precisely, based on Browder’s result, optimal control theory, measurability of set-valued mappings and the theory of semigroups, we establish that the solution set of DVI is nonempty and compact. In addition, the theoretical developments are accompanied by an application to differential Nash games.


2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
İbrahim Avcı 

In this paper, we consider numerical solutions for a general form of fractional delay differential equations (FDDEs) with fractional derivatives defined in the Caputo sense. A fractional integration operational matrix, created using a fractional Taylor basis, is applied to solve these FDDEs. The main characteristic of this approach is, by utilizing the operational matrix of fractional integration, to reduce the given differential equation to a set of algebraic equations with unknown coefficients. This equation system can be solved efficiently using a computer algorithm. A bound on the error for the best approximation and fractional integration are also given. Several examples are given to illustrate the validity and applicability of the technique. The efficiency of the presented method is revealed by comparing results with some existing solutions, the findings of some other approaches from the literature and by plotting absolute error figures.


Sign in / Sign up

Export Citation Format

Share Document