scholarly journals The time-dependent orienteering problem with time windows: a fast ant colony system

2017 ◽  
Vol 254 (1-2) ◽  
pp. 481-505 ◽  
Author(s):  
Cédric Verbeeck ◽  
Pieter Vansteenwegen ◽  
El-Houssaine Aghezzaf
2014 ◽  
Vol 505-506 ◽  
pp. 1071-1075
Author(s):  
Yi Sun ◽  
Yue Chen ◽  
Chang Chun Pan ◽  
Gen Ke Yang

This paper presents a real road network case based on the time dependent vehicle routing problem with time windows (TDVRPTW), which involves optimally routing a fleet of vehicles with fixed capacity when traffic conditions are time dependent and services at customers are only available in their own time tables. A hybrid algorithm based on the Genetic Algorithm (GA) and the Multi Ant Colony System (MACS) is introduced in order to find optimal solutions that minimize two hierarchical objectives: the number of tours and the total travel cost. The test results show that the integrated algorithm outperforms both of its traditional ones in terms of the convergence speed towards optimal solutions.


2021 ◽  
Author(s):  
Yi Mei ◽  
Flora D Salim ◽  
Xiaodong Li

In this paper, the Multi-Objective Time-Dependent Orienteering Problem (MOTDOP) is investigated. Time-dependent travel time and multiple preferences are two of the most important factors in practice, and have been handled separately in previous work. However, no attempts have been made so far to consider these two factors together. Handling both multiple preferences and time-dependent travel time simultaneously poses a challenging optimization task in this NP-hard problem. In this study, two meta-heuristic methods are proposed for solving MOTDOP: a Multi-Objective Memetic Algorithm (MOMA) and a Multi-objective Ant Colony System (MACS). Two sets of benchmark instances were generated to evaluate the proposed algorithms. The experimental studies show that both MOMA and MACS managed to find better solutions than an existing multi-objective evolutionary algorithm (FMOEA). Additionally, MOMA achieved better performance than MACS in a shorter time, and is less sensitive to the parameter setting. Given that MACS inherits promising features of P-ACO, which is a state-of-the-art algorithm for multi-objective orienteering problem, the advantage of MOMA over MACS and FMOEA demonstrates the efficacy of adopting the memetic algorithm framework to solve MOTDOP. Graphical Abstract https://ars.els-cdn.com/content/image/1-s2.0-S0377221716301990-fx1_lrg.jpg © This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/


Author(s):  
Damianos Gavalas ◽  
Charalampos Konstantopoulos ◽  
Konstantinos Mastakas ◽  
Grammati Pantziou ◽  
Nikolaos Vathis

Sign in / Sign up

Export Citation Format

Share Document