team orienteering problem
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 48)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 11 (24) ◽  
pp. 12092
Author(s):  
Javier Panadero ◽  
Majsa Ammouriova ◽  
Angel A. Juan ◽  
Alba Agustin ◽  
Maria Nogal ◽  
...  

In smart cities, unmanned aerial vehicles and self-driving vehicles are gaining increased concern. These vehicles might utilize ultra-reliable telecommunication systems, Internet-based technologies, and navigation satellite services to locate their customers and other team vehicles to plan their routes. Furthermore, the team of vehicles should serve their customers by specified due date efficiently. Coordination between the vehicles might be needed to be accomplished in real-time in exceptional cases, such as after a traffic accident or extreme weather conditions. This paper presents the planning of vehicle routes as a team orienteering problem. In addition, an ‘agile’ optimization algorithm is presented to plan these routes for drones and other autonomous vehicles. This algorithm combines an extremely fast biased-randomized heuristic and a parallel computing approach.


2021 ◽  
Author(s):  
Μανούσος Ρηγάκης

Στη παρούσα διδακτορική διατριβή μελετήθηκε ο σχεδιασμός τουριστικών διαδρομών, ως αποτέλεσμα της επίλυσης προβλημάτων δρομολόγησης οχημάτων κάνοντας χρήση ειδικά σχεδιασμένων αλγοριθμικών πλαισίων. Θεωρείται ότι τα προβλήματα δρομολόγησης οχημάτων της βιβλιογραφίας μπορούν να χρησιμοποιηθούν (ως έχει ή παραλλαγμένα) στο σχεδιασμό διαδρομών ανάμεσα στα σημεία ενδιαφέροντος (POIs) ενός ταξιδιωτικού προορισμού. Σημαντικός παράγοντας της δρομολόγησης είναι η πεπερασμένη διάρκεια του ταξιδιού, το οποίο πρακτικά σημαίνει ότι δεν είναι δυνατή η επίσκεψη κάθε σημείου ενδιαφέροντος. Συνεπώς, κατά το σχηματισμό εξατομικευμένων τουριστικών διαδρομών γίνεται η επιλογή ενός υποσυνόλου από τα διαθέσιμα σημεία, τα οποία συμβάλουν περισσότερο στην ικανοποίηση του χρήστη, λαμβάνοντας υπόψιν τις αντίστοιχες προτιμήσεις του. Έτσι, εξετάστηκαν διαφορετικά σενάρια λαμβάνοντας υπόψη ένα άτομο ή μία ομάδα ατόμων και τις αντίστοιχες προτιμήσεις τους. Αρχικά, στη περίπτωση ενός ατόμου, εξετάστηκε ο βέλτιστος σχεδιασμός διαδρομών στα σημεία ενδιαφέροντος θεωρώντας ότι η προτίμηση του σε κάθε σημείο ενδιαφέροντος έχει εκ των προτέρων δηλωθεί με τη χρήση διακριτών τιμών. Για το σκοπό αυτό, επιλέχθηκε το Πρόβλημα Προσανατολισμού Ομάδας με Περιορισμένη Χωρητικότητα (Capacitated Team Orienteering Problem (CTOP)) και το Πρόβλημα Δρομολόγησης Οχημάτων Συλλογής Βραβείου (Prize-Collecting Vehicle Routing Problem (PCVRP)). Για τη βελτιστοποίηση του CTOP σχεδιάστηκε ένα κατάλληλο αλγοριθμικό πλαίσιο, ο αλγόριθμος της Διαφορικής Εξέλιξης Σχετιζόμενη με τις Αποστάσεις (Distance Related Differential Evolution (DRDE)). Τα αποτελέσματα της μεθόδου DRDE συγκρίθηκαν με τις βέλτιστες τιμές των παραδειγμάτων αναφοράς της βιβλιογραφίας, αναδεικνύοντας την αποτελεσματικότητα και ανταγωνιστικότητα της προτεινόμενης μεθόδου. Για τη βελτιστοποίηση του PCVRP προτείνεται ο Αλγόριθμος της Πυγολαμπίδας βασισμένος στις Συντεταγμένες (Firefly Algorithm based on Coordinates (FACR)). Ο προτεινόμενος αλγόριθμος FACR συγκρίνεται στην επίλυση των παραδειγμάτων αναφοράς της βιβλιογραφίας του PCVRP, με τον προτεινόμενο DRDE, του οποίου και υπερισχύει. Στην περίπτωση, που ο επισκέπτης εξετάζει παράλληλα διαφορετικά ή αντικρουόμενα κριτήρια σχεδιασμού των τουριστικών διαδρομών του, γίνεται χρήση πολυ-αντικειμενικών προβλημάτων, όπως το Πολυ-αντικειμενικό Πρόβλημα Δρομολόγησης Οχημάτων Συλλογής Βραβείου (Multi-Objective Prize-Collecting Vehicle Routing Problem (MO-PCVRP)). Η επίλυση τέτοιων προβλημάτων δεν οδηγεί σε μία μοναδική βέλτιστη λύση, αλλά σε ένα υποσύνολο των καλύτερων λύσεων που δεν μπορούν να συγκριθούν μεταξύ τους. Για αυτό το λόγο, προτείνεται ένα αλληλεπιδραστικό πλαίσιο που βασίζεται στον προτεινόμενο Αλγόριθμο της Πυγολαμπίδας με Καθοδήγηση Προτιμήσεων (Preference-Guided Firefly Algorithm (PGFA)), ο οποίος βασίζεται στον προτεινόμενο FACR. Μέσα από το οποίο, ο επισκέπτης δηλώνει τη προτίμηση του και κατευθύνει την αναζήτηση, κάνοντας χρήση μεθόδων αναλυτικής συνθετικής προσέγγισης. Τα υπολογιστικά πειράματα, έδειξαν ότι η προτεινόμενη αλληλεπιδραστική μέθοδος κατευθύνει επιτυχώς την αναζήτηση στο χώρο λύσεων σύμφωνα με τις προτιμήσεις του επισκέπτη. Τέλος, μελετήθηκε και το σενάριο σχεδιασμού τουριστικών διαδρομών για μία ομάδα ατόμων, θεωρώντας ότι τα μέλη της έχουν διαφορετικές ή αντικρουόμενες προτιμήσεις, όμως επιθυμούν να ταξιδέψουν μαζί. Στη παρούσα διατριβή προτείνεται η χρήση μίας μεθόδου που ενσωματώνει στοιχεία της Θεωρίας Παιγνίων και της αλγοριθμικής βελτιστοποίησης, με στόχο την πρόταση τουριστικών διαδρομών που να καλύπτουν τις διαφορετικές προτιμήσεις και να ικανοποιούνται όλα τα μέλη της ομάδας. Συγκεκριμένα, χρησιμοποιείται η επαναληπτική προσομοίωση του παιγνίου n-Ατόμων Μάχη των Φύλων (n-Person Battle of the Sexes (n-BOS)), προσομοιώνοντας (μέσω πρακτόρων) την αλληλεπίδραση των μελών της ομάδας τουριστών. Ενώ, η διαδρομή με τα σημεία ενδιαφέροντος προκύπτει από την επίλυση του προτεινόμενου Προβλήματος Δρομολόγησης Οχημάτων Συλλογής Βραβείου n Ατόμων (n-Person Prize-Collecting Vehicle Routing Problem (n-PCVRP)), η οποία βελτιστοποιείται μέσω του ειδικά σχεδιασμένου Αλγόριθμου της Πυγολαμπίδας βασισμένος στις Συντεταγμένες και Αποστάσεις (Fireflly Algorithm based on Coordinates and Distance (FACRD)). Σε αυτό το αλγοριθμικό πλαίσιο ενσωματώνονται ειδικά σχεδιασμένες ευρετικές τεχνικές κατασκευής και βελτίωσης των λύσεων, ενώ χρησιμοποιείται μία νέα μέθοδος κωδικοποίησης/αποκωδικοποίησης. Ο προτεινόμενος αλγόριθμος αποδίδει εφικτές και αποτελεσματικές λύσεις που συνάδουν με τις προτιμήσεις της ομάδας.


Author(s):  
Qinxiao Yu ◽  
Yossiri Adulyasak ◽  
Louis-Martin Rousseau ◽  
Ning Zhu ◽  
Shoufeng Ma

This paper studies the team orienteering problem, where the arrival time and service time affect the collection of profits. Such interactions result in a nonconcave profit function. This problem integrates the aspect of time scheduling into the routing decision, which can be applied in humanitarian search and rescue operations where the survival rate declines rapidly. Rescue teams are needed to help trapped people in multiple affected sites, whereas the number of people who could be saved depends as well on how long a rescue team spends at each site. Efficient allocation and scheduling of rescue teams is critical to ensure a high survival rate. To solve the problem, we formulate a mixed-integer nonconcave programming model and propose a Benders branch-and-cut algorithm, along with valid inequalities for tightening the upper bound. To solve it more effectively, we introduce a hybrid heuristic that integrates a modified coordinate search (MCS) into an iterated local search. Computational results show that valid inequalities significantly reduce the optimality gap, and the proposed exact method is capable of solving instances where the mixed-integer nonlinear programming solver SCIP fails in finding an optimal solution. In addition, the proposed MCS algorithm is highly efficient compared with other benchmark approaches, whereas the hybrid heuristic is proven to be effective in finding high-quality solutions within short computing times. We also demonstrate the performance of the heuristic with the MCS using instances with up to 100 customers. Summary of Contribution: Motivated by search and rescue (SAR) operations, we consider a generalization of the well-known team orienteering problem (TOP) to incorporate a nonlinear time-varying profit function in conjunction with routing and scheduling decisions. This paper expands the envelope of operations research and computing in several ways. To address the scalability issue of this highly complex combinatorial problem in an exact manner, we propose a Benders branch-and-cut (BBC) algorithm, which allows us to efficiently deal with the nonconcave component. This BBC algorithm is computationally enhanced through valid inequalities used to strengthen the bounds of the BBC. In addition, we propose a highly efficient hybrid heuristic that integrates a modified coordinate search into an iterated local search. It can quickly produce high-quality solutions to this complex problem. The performance of our solution algorithms is demonstrated through a series of computational experiments.


Author(s):  
Esam Taha Yassen ◽  
Alaa Abdulkhar Jihad ◽  
Sudad H. Abed

<span>Over the last decade, many nature-inspired algorithms have been received considerable attention among practitioners and researchers to handle several optimization problems. Lion optimization algorithm (LA) is inspired by a distinctive lifestyle of lions and their collective behavior in their social groups. LA has been presented as a powerful optimization algorithm to solve various optimization problems. In this paper, the LA is proposed to investigate its performance in solving one of the most popular and widespread real-life optimization problems called team orienteering problem with time windows (TOPTW). However, as any population-based metaheuristic, the LA is very efficient in exploring the search space, but inefficient in exploiting it. So, this paper proposes enhancing LA to tackle the TOPTW by utilizing its strong ability to explore the search space and improving its exploitation ability. This enhancement is achieved via improving a process of territorial defense to generate a trespass strong nomadic lion to prevail a pride by fighting its males. As a result of this improving process, an enhanced LA (ILA) emerged. The obtained solutions have been compared with the best known and standard results obtained in the former studies. The conducted experimental test verifies the effectiveness of the ILA in solving the TOPTW as it obtained a very competitive results compared to the LA and the state-of-the-art methods across all tested instances.</span>


Sign in / Sign up

Export Citation Format

Share Document