Correlation between Olfactory Responses, Dispersal Tendencies, and Life-history Traits of the Predatory Mite Neoseiulus Womersleyi (Acari: Phytoseiidae) of Eight Local Populations

2005 ◽  
Vol 37 (1-2) ◽  
pp. 67-82 ◽  
Author(s):  
Taro Maeda
2019 ◽  
Vol 24 (8) ◽  
pp. 1512-1525
Author(s):  
Niloufar Sangak Sani Bozhgani1 ◽  
Katayoon Kheradmand ◽  
Aliasghar Talebi

Estimating sublethal effects of acaricides on phytoseiid mites and their prey as a reliable approach in predicting the acaricides impacts is mandatory for IPM programs. The aim of this study was to evaluate the effects of spiromesifen on life history traits and demographic parameters of the offspring of Neoseiulus californicus and Tetranychus urticae under laboratory conditions [25 ± 2ºC, 70 ± 5% RH and 16:8 (L:D) h]. The experiments were conducted based on the leaf-dip technique. The crude data were analysed based on age-stage, two-sex life table analysis. The pre-adult and adult longevity of both sexes significantly reduced for N. califonicus and T. urticae with the concentration enhancing from LC20 to LC35. In addition, the oviposition period for both species significantly decreased as a consequence of treatment with LC25 and LC35 of spiromesifen. The minimal values of the total fecundity for N. califonicus and T. urticae were 16.58 and 19.35 (offspring/individual), respectively, which was related to LC35 concentration. Further, the lowest values of R0 and GRR of N. califonicus and its prey were 48.88 and 31.14 (offspring/individual) in LC35, respectively. However, the intrinsic rate of increase (r) and finite rate of increase (λ) were not significantly influenced by sublethal concentration in N. californicus while the r and λ were significantly reduced in T. urticae treated by LC20, LC25 and LC35. Therefore, spiromesifen could profoundly decrease the population growth rate of T. urticae but can not be considered as a compatible acaricide with N. califonicus because of its negative effect on the longevity, total lifespan, and reproductive periods and should not be used with this predatory mite in integrated pest management programs.


2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


2020 ◽  
Vol 27 (4) ◽  
pp. 195-200
Author(s):  
Ufuk Bülbül ◽  
Halime Koç ◽  
Yasemin Odabaş ◽  
Ali İhsan Eroğlu ◽  
Muammer Kurnaz ◽  
...  

Age structure of the eastern spadefoot toad, Pelobates syriacus from the Kızılırmak Delta (Turkey) were assessed using phalangeal skeletochronology. Snout-vent length (SVL) ranged from 42.05 to 86.63 mm in males and 34.03 to 53.27 mm in females. Age of adults ranged from 2 to 8 years in males and 3 to 5 years in females. For both sexes, SVL was significantly correlated with age. Males and females of the toads reached maturity at 2 years of age.


Sign in / Sign up

Export Citation Format

Share Document