sublethal effects
Recently Published Documents


TOTAL DOCUMENTS

1280
(FIVE YEARS 326)

H-INDEX

54
(FIVE YEARS 7)

2022 ◽  
Vol 176 ◽  
pp. 114413
Author(s):  
Susana Sánchez-Gómez ◽  
Rafael Pagán ◽  
Roman Pavela ◽  
Eugenia Mazzara ◽  
Eleonora Spinozzi ◽  
...  

2022 ◽  
Author(s):  
Abraão Almeida Santos ◽  
Cliver F. Farder-Gomes ◽  
Arthur V. Ribeiro ◽  
Thiago L. Costa ◽  
Josélia Carvalho Oliveira França ◽  
...  

Abstract The global search for eco-friendly and human-safe pesticides has intensified, and research on essential oils (EOs) has expanded due to their remarkable insecticidal activities and apparent human-safe. Despite this, most of the literature focuses on short-term and simplified efforts to understand lethal effects, with only a few comprehensive studies addressing sublethal exposures. To fill this shortcoming, we explore the lethal and sublethal effects of Pogostemon cablin (Lamiaceae) EO and an EO-based emulsion (18%) using the coffee berry borer Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae) as a model. First, we determine the toxicity of EO and EO-based emulsion using dose-mortality curves and lethal times. Second, we subjected adult females of H. hampei to sublethal doses to assess whether they affected their behavior, reproductive output, and histological features. Our findings reveal that patchoulol (43.05%), α-Guaiene (16.06%), and α-Bulnesene (13.69%) were the main components of the EO. Furthermore, the EO and its emulsion had similar toxicity, with dose-mortality curves and lethal times overlapping 95% confidence intervals. We also observed that sublethal exposure of females of H. hampei reduces reproduction and feeding, increases walking activity, and causes histopathological changes in the midgut. This study advances the knowledge of sublethal effects of an eco-friendly substance on insects.


Author(s):  
Hannah Hollowell ◽  
Lynne K. Rieske

AbstractThe efficacy and high specificity of the RNA interference pathway has prompted its exploration as a potential molecular management tool for many insect pests, including the destructive southern pine beetle, Dendroctonus frontalis Zimmermann, in which gene knockdown and mortality via double-stranded RNAs (dsRNAs) have already been demonstrated in the laboratory. The nucleotide sequence of dsRNAs requires an exact match of at least 16 nucleotides with the targeted messenger RNA to trigger knockdown of that gene. This allows vital genes in a target pest to be silenced and mortality induced while reducing the probability of adverse effects in nontarget organisms. However, prior to utilization in forest ecosystems, demonstration of the specificity of dsRNAs through laboratory bioassays evaluating potential nontarget effects on model insects is required for proper risk assessment analyses. Consequently, we evaluated three SPB-specific dsRNAs for lethal effects, sublethal effects (larval growth rate, adult emergence or adult fecundity), and relative gene expression in three model nontarget insects representing key functional guilds, including a predator, herbivore, and pollinator. The SPB-specific dsRNAs had no effect on survival of our nontarget insects. Additionally, no sublethal effects were found and the gene expression analyses corroborated bioinformatic analyses in finding no gene knockdown. Our findings support the high specificity of RNAi technology and provide support for its development and deployment for protection of conifer forests against SPB with minimal nontarget concerns.


2021 ◽  
Author(s):  
Diego Henrique de Sousa Miranda ◽  
Lucas Campos Maltez ◽  
Marina Espírito Santo Campello ◽  
Joel Fitzgerald Linares Córdova ◽  
Ricardo Vieira Rodrigues ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1131
Author(s):  
Yuanyuan Zhang ◽  
Gang Xu ◽  
Yu Jiang ◽  
Chao Ma ◽  
Guoqing Yang

Laodelphax striatellus damages plants directly through sucking plant sap and indirectly as a vector of rice stripe virus (RSV), resulting in serious losses of rice yield. It is one of the most destructive insects of rice in East Asia. Insecticides are primarily used for pest management, but the sublethal concentrations of insecticides may benefit several insects. The present research attempted to explore the effects of sublethal concentrations of imidacloprid on the fecundity, apoptosis and RSV transmission in the viruliferous SBPH. The results showed that the fecundity of SBPH was significantly increased after treatment with the LC10 dose of imidacloprid, while the LC30 dose of imidacloprid reduced the fecundity compared with the control. To further investigate the underlying mechanism of increased fecundity after exposure to the LC10 dose of imidacloprid, we examined the expression levels of vitellogenin (Vg), Vg receptor (VgR) and caspases in the ovaries of SBPH, and observed the apoptosis by terminal deoxynucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling (TUNEL). qRT-PCR results indicated that the expression levels of Vg, VgR and four caspase genes were all significantly increased by the LC10 dose of imidacloprid, and TUNEL assays suggested that the frequency of apoptosis was significantly higher in the SBPH treated by the LC10 dose of imidacloprid, suggesting a potential correlation between the increased fecundity and the apoptosis of SBPH ovarioles. Additionally, the expression levels of RNA3 and capsid protein (CP) were both increased significantly by the LC10 dose of imidacloprid, whereas were decreased by the LC30 dose of imidacloprid compared to the control. Therefore, this study clarifies the mechanisms of sublethal effects of imidacloprid on viruliferous SBPH and could be used to optimize pest control strategies.


2021 ◽  
Author(s):  
Petra Hafker ◽  
Lily M Thompson ◽  
Dylan Parry ◽  
Jonathan A Walter ◽  
Kristine L Grayson

As the global climate changes, high and low temperature extremes can drive changes in species distributions. Across the range of a species, thermal tolerance can experience plasticity and may undergo selection, shaping resilience to temperature stress. In this study, we measured variation in the lower thermal tolerance of early instar larvae of an invasive forest insect, Lymantria dispar dispar L. (Lepidoptera: Erebidae), using populations sourced from the climatically diverse invasion of the Eastern United States. In two chill coma recovery experiments, we recorded recovery time following a period of exposure to a non-lethal cold temperature. A third experiment quantified growth responses after chill coma recovery to evaluate sublethal effects. Our results indicate that cold tolerance is linked to regional climate, with individuals from cold climate populations recovering faster from chill coma. While this geographic gradient is seen in many species, detecting this pattern is notable for an introduced species founded from a single point-source introduction. We demonstrate that the cold temperatures used in our experiments occur in nature from cold snaps after spring hatching, but negative impacts to growth and survival appear low. We expect that population differences in cold temperature performance manifest more from differences in temperature-dependent growth than acute exposure. Evaluating intraspecific variation in cold tolerance increases our understanding of the role of climatic gradients on the physiology of an invasive species, and contributes to tools for predicting further expansion.


2021 ◽  
Author(s):  
Wafa Djobbi ◽  
Meriem Msaad Guerfali ◽  
Agnès Vallier ◽  
Kamel Charaabi ◽  
Justin Maire ◽  
...  

Abstract Ceratitis capitata (medfly), is one of the most injurious pests of fruits with quarantine importance because of its extremely wide host range. The use of entomopathogenic fungi constitutes a promising approach for potential applications in integrated pest management. Nonetheless, developing methods of insect control can also involve the use of fungal machinery to produce metabolic disturbance that can increase its effectiveness by producing a detrimental effect on insect development. Insect species, such as Ceratitis capitata, depend on reproduction potential, nutrient reserves, metabolic activities and immune response for their survival. Accordingly, the purpose of this study is to use the entomopathogenic fungus Purpureocillium lilacinum to investigate, its sublethal effects on Ceratitis capitata. Laboratory bioassays were conducted on medfly V8 strain. The bioassays were monitored to determine the virulence of P. lilacinum on the fruit fly. P. lilacinum was tested against 5 days-old males and females, through abdominal topical applications. Following the fungal inoculation, we showed (i) a significant increase of sugar amount in tissues, (ii) a significant decrease in carbohydrase activities, digestive glycosyl hydrolase and proteinase activities in whole midguts of treated flies, (iii) an over-expression of Takeout and Attacin-A genes induced by infection. Moreover, the up-regulations observed for relish, cecropin 1, ceratotox-A and defensin genes are due to physiological mechanisms occurring during infection.


Author(s):  
Kannayiram Muthukumaravel ◽  
Kumara Perumal Pradhoshini ◽  
Natarajan Vasanthi ◽  
Venkatachalam Kanagavalli ◽  
Mohamed Ahadu Shareef ◽  
...  

Background: The current study was performed aiming to evaluate possible changes in the effect on oxygen consumption, hematology and gill histopathological parameters in fish (Chanos chanos) upon exposure to sublethal concentration of the metalloid arsenic. Methods: Bioassay tests were conducted for determining the LC50 values of arsenic for 96 h. Oxygen consumption in control and arsenic-exposed fish was estimated using Winkler’s method. Red blood corpuscular (RBC) count was examined with a Neubauer counting chamber under a phase contrast microscope. Hemoglobin (Hb) was estimated following the acid hematin method. Histopathological studies were carried by processing and staining the gill tissues with hematoxylin and eosin in accordance with standard histological techniques. They were then subjected to examination under a scanning electron microscope. Results: Chanos chanos exposed to 1/10th of LC50 (24.61%) for a period of 30 days exhibited a maximum decline in the rate of respiration, followed by a decline in RBC and Hb above 45.59% and 51.60%, respectively. Significant toxic lesions encompassing fused gill lamellae, detached gill epithelium, hyperplasia and hypertrophy of respiratory epithelium became heavy handed on the 30th day. Conclusion: Information synthesized from our study serves to be useful in monitoring and managing (As) contamination in the aquatic environment.


2021 ◽  
Author(s):  
Fabricio Oliveira Fernandes ◽  
Tamires Doroteo de Souza ◽  
Ariadne Costas Sanches ◽  
Ivan Ricardo Carvalho ◽  
Naymã Pinto Dias ◽  
...  

Abstract Anticarsia gemmatalis Hünber, 1818 is one of the main defoliating species in the soybean crop. Bacillus thuringiensis Berliner, 1915, is a bacterium used in the biological control of this pest species. Resistant populations and their sublethal effects caused by the use of the bacteria have already been reported; however, there are no studies on phenotypic plasticity in adulthood exposed to Bt-based bioinsecticide sub-doses. This study aimed to evaluate the morphometry of A. gemmatalis adults under laboratory conditions submitted to the Bt-based bioinsecticide Dipel SC over the three generations. The body segments mensuread were width, length, and area of the anterior and posterior wings, the weight of the integument, chest, abdomen, wings, and the whole adult of males and females. Among the treatments, LC5 in the first generation and CL10 in the second generation were those with lower thresholds in relation to the weight of the chest and abdomen, considering the proportions of the body smaller than the females. The female’s weight adulthood was reduced by 10% about males, and, only in the first generation. Males have larger body size and more pronounced phenotypic plasticity than females. Here, we demonstrate the first study assessing the phenotypic plasticity of A. gemmatalis adults.


Sign in / Sign up

Export Citation Format

Share Document