A Spalart–allmaras Turbulence Model Implementation for High-order Discontinuous Galerkin Solution of the Reynolds-averaged Navier-stokes Equations

2015 ◽  
Vol 96 (3) ◽  
pp. 623-638 ◽  
Author(s):  
Jiang ZhenHua ◽  
Yan Chao ◽  
Yu Jian ◽  
Qu Feng ◽  
Yuan Wu
Author(s):  
Fan Feng ◽  
Chunwei Gu ◽  
Xuesong Li

In this paper Discontinuous Galerkin Method (DGM) is applied to solve the Reynolds-averaged Navier-Stokes equations and S-A turbulence model equation in curvilinear coordinate system. Different schemes, including Lax-Friedrichs (LF) flux, Harten, Lax and van Leer (HLL) flux and Roe flux are adopted as numerical flux of inviscid terms at the element interface. The gradients of conservative variables in viscous terms are constructed by mixed formulation, which solves the gradients as auxiliary unknowns to the same order of accuracy as conservative variables. The methodology is validated by simulations of double Mach reflection problem and three-dimensional turbulent flowfield within compressor cascade NACA64. The numerical results agree well with the experimental data.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
A. Ghidoni ◽  
A. Colombo ◽  
S. Rebay ◽  
F. Bassi

In the last decade, discontinuous Galerkin (DG) methods have been the subject of extensive research efforts because of their excellent performance in the high-order accurate discretization of advection-diffusion problems on general unstructured grids, and are nowadays finding use in several different applications. In this paper, the potential offered by a high-order accurate DG space discretization method with implicit time integration for the solution of the Reynolds-averaged Navier–Stokes equations coupled with the k-ω turbulence model is investigated in the numerical simulation of the turbulent flow through the well-known T106A turbine cascade. The numerical results demonstrate that, by exploiting high order accurate DG schemes, it is possible to compute accurate simulations of this flow on very coarse grids, with both the high-Reynolds and low-Reynolds number versions of the k-ω turbulence model.


Author(s):  
Fahua Gu ◽  
Mark R. Anderson

The design of turbomachinery has been focusing on the improvement of the machine efficiency and the reduction of the design cost. This paper presents an integrated design system to create the machine geometry and to predict the machine performance at different levels of approximation, including one-dimensional design and analysis, quasi-three-dimensional-(blade-to-blade, throughflow) and full-three-dimensional-steady-state CFD analysis. One of the most important components, the Reynolds-averaged Navier-Stokes solver, is described in detail. It originated from the Dawes solver with numerous enhancements. They include the use of the low speed pre-conditioned full Navier-Stokes equations, the addition of the Spalart-Allmaras turbulence model and an improvement of wall functions related with the turbulence model. The latest upwind scheme, AUSM, has been implemented too. The Dawes code has been rewritten into a multi-block solver for O, C, and H grids. This paper provides some examples to evaluate the effect of grid topology on the machine performance prediction.


Sign in / Sign up

Export Citation Format

Share Document