scholarly journals PRILJ: an efficient two-step method based on embedding and clustering for the identification of regularities in legal case judgments

Author(s):  
Graziella De Martino ◽  
Gianvito Pio ◽  
Michelangelo Ceci

AbstractIn an era characterized by fast technological progress that introduces new unpredictable scenarios every day, working in the law field may appear very difficult, if not supported by the right tools. In this respect, some systems based on Artificial Intelligence methods have been proposed in the literature, to support several tasks in the legal sector. Following this line of research, in this paper we propose a novel method, called PRILJ, that identifies paragraph regularities in legal case judgments, to support legal experts during the redaction of legal documents. Methodologically, PRILJ adopts a two-step approach that first groups documents into clusters, according to their semantic content, and then identifies regularities in the paragraphs for each cluster. Embedding-based methods are adopted to properly represent documents and paragraphs into a semantic numerical feature space, and an Approximated Nearest Neighbor Search method is adopted to efficiently retrieve the most similar paragraphs with respect to the paragraphs of a document under preparation. Our extensive experimental evaluation, performed on a real-world dataset provided by EUR-Lex, proves the effectiveness and the efficiency of the proposed method. In particular, its ability of modeling different topics of legal documents, as well as of capturing the semantics of the textual content, appear very beneficial for the considered task, and make PRILJ very robust to the possible presence of noise in the data.

Author(s):  
Xiao Luo ◽  
Daqing Wu ◽  
Zeyu Ma ◽  
Chong Chen ◽  
Minghua Deng ◽  
...  

Recently, hashing is widely used in approximate nearest neighbor search for its storage and computational efficiency. Most of the unsupervised hashing methods learn to map images into semantic similarity-preserving hash codes by constructing local semantic similarity structure from the pre-trained model as the guiding information, i.e., treating each point pair similar if their distance is small in feature space. However, due to the inefficient representation ability of the pre-trained model, many false positives and negatives in local semantic similarity will be introduced and lead to error propagation during the hash code learning. Moreover, few of the methods consider the robustness of models, which will cause instability of hash codes to disturbance. In this paper, we propose a new method named Comprehensive sImilarity Mining and cOnsistency learNing (CIMON). First, we use global refinement and similarity statistical distribution to obtain reliable and smooth guidance. Second, both semantic and contrastive consistency learning are introduced to derive both disturb-invariant and discriminative hash codes. Extensive experiments on several benchmark datasets show that the proposed method outperforms a wide range of state-of-the-art methods in both retrieval performance and robustness.


2020 ◽  
Author(s):  
Cameron Hargreaves ◽  
Matthew Dyer ◽  
Michael Gaultois ◽  
Vitaliy Kurlin ◽  
Matthew J Rosseinsky

It is a core problem in any field to reliably tell how close two objects are to being the same, and once this relation has been established we can use this information to precisely quantify potential relationships, both analytically and with machine learning (ML). For inorganic solids, the chemical composition is a fundamental descriptor, which can be represented by assigning the ratio of each element in the material to a vector. These vectors are a convenient mathematical data structure for measuring similarity, but unfortunately, the standard metric (the Euclidean distance) gives little to no variance in the resultant distances between chemically dissimilar compositions. We present the Earth Mover’s Distance (EMD) for inorganic compositions, a well-defined metric which enables the measure of chemical similarity in an explainable fashion. We compute the EMD between two compositions from the ratio of each of the elements and the absolute distance between the elements on the modified Pettifor scale. This simple metric shows clear strength at distinguishing compounds and is efficient to compute in practice. The resultant distances have greater alignment with chemical understanding than the Euclidean distance, which is demonstrated on the binary compositions of the Inorganic Crystal Structure Database (ICSD). The EMD is a reliable numeric measure of chemical similarity that can be incorporated into automated workflows for a range of ML techniques. We have found that with no supervision the use of this metric gives a distinct partitioning of binary compounds into clear trends and families of chemical property, with future applications for nearest neighbor search queries in chemical database retrieval systems and supervised ML techniques.


2021 ◽  
Vol 7 (2) ◽  
pp. 187-199
Author(s):  
Meng-Hao Guo ◽  
Jun-Xiong Cai ◽  
Zheng-Ning Liu ◽  
Tai-Jiang Mu ◽  
Ralph R. Martin ◽  
...  

AbstractThe irregular domain and lack of ordering make it challenging to design deep neural networks for point cloud processing. This paper presents a novel framework named Point Cloud Transformer (PCT) for point cloud learning. PCT is based on Transformer, which achieves huge success in natural language processing and displays great potential in image processing. It is inherently permutation invariant for processing a sequence of points, making it well-suited for point cloud learning. To better capture local context within the point cloud, we enhance input embedding with the support of farthest point sampling and nearest neighbor search. Extensive experiments demonstrate that the PCT achieves the state-of-the-art performance on shape classification, part segmentation, semantic segmentation, and normal estimation tasks.


2011 ◽  
Vol 23 (5) ◽  
pp. 641-654 ◽  
Author(s):  
Stavros Papadopoulos ◽  
Lixing Wang ◽  
Yin Yang ◽  
Dimitris Papadias ◽  
Panagiotis Karras

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Mingjun Deng ◽  
Shiru Qu

There are many short-term road travel time forecasting studies based on time series, but indeed, road travel time not only relies on the historical travel time series, but also depends on the road and its adjacent sections history flow. However, few studies have considered that. This paper is based on the correlation of flow spatial distribution and the road travel time series, applying nearest neighbor and nonparametric regression method to build a forecasting model. In aspect of spatial nearest neighbor search, three different space distances are defined. In addition, two forecasting functions are introduced: one combines the forecasting value by mean weight and the other uses the reciprocal of nearest neighbors distance as combined weight. Three different distances are applied in nearest neighbor search, which apply to the two forecasting functions. For travel time series, the nearest neighbor and nonparametric regression are applied too. Then minimizing forecast error variance is utilized as an objective to establish the combination model. The empirical results show that the combination model can improve the forecast performance obviously. Besides, the experimental results of the evaluation for the computational complexity show that the proposed method can satisfy the real-time requirement.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 72939-72951
Author(s):  
Mingwei Cao ◽  
Wei Jia ◽  
Zhihan Lv ◽  
Wenjun Xie ◽  
Liping Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document