Computational Visual Media
Latest Publications


TOTAL DOCUMENTS

250
(FIVE YEARS 124)

H-INDEX

12
(FIVE YEARS 6)

Published By Springer-Verlag

2096-0662, 2096-0433

Author(s):  
Tianlin Zhang ◽  
Jinjiang Li ◽  
Hui Fan

AbstractDeblurring images of dynamic scenes is a challenging task because blurring occurs due to a combination of many factors. In recent years, the use of multi-scale pyramid methods to recover high-resolution sharp images has been extensively studied. We have made improvements to the lack of detail recovery in the cascade structure through a network using progressive integration of data streams. Our new multi-scale structure and edge feature perception design deals with changes in blurring at different spatial scales and enhances the sensitivity of the network to blurred edges. The coarse-to-fine architecture restores the image structure, first performing global adjustments, and then performing local refinement. In this way, not only is global correlation considered, but also residual information is used to significantly improve image restoration and enhance texture details. Experimental results show quantitative and qualitative improvements over existing methods.


Author(s):  
Lei Ren ◽  
Ying Song

AbstractAmbient occlusion (AO) is a widely-used real-time rendering technique which estimates light intensity on visible scene surfaces. Recently, a number of learning-based AO approaches have been proposed, which bring a new angle to solving screen space shading via a unified learning framework with competitive quality and speed. However, most such methods have high error for complex scenes or tend to ignore details. We propose an end-to-end generative adversarial network for the production of realistic AO, and explore the importance of perceptual loss in the generative model to AO accuracy. An attention mechanism is also described to improve the accuracy of details, whose effectiveness is demonstrated on a wide variety of scenes.


2021 ◽  
Vol 8 (2) ◽  
pp. 317-328
Author(s):  
Meng-Yao Cui ◽  
Zhe Zhu ◽  
Yulu Yang ◽  
Shao-Ping Lu

AbstractExisting color editing algorithms enable users to edit the colors in an image according to their own aesthetics. Unlike artists who have an accurate grasp of color, ordinary users are inexperienced in color selection and matching, and allowing non-professional users to edit colors arbitrarily may lead to unrealistic editing results. To address this issue, we introduce a palette-based approach for realistic object-level image recoloring. Our data-driven approach consists of an offline learning part that learns the color distributions for different objects in the real world, and an online recoloring part that first recognizes the object category, and then recommends appropriate realistic candidate colors learned in the offline step for that category. We also provide an intuitive user interface for efficient color manipulation. After color selection, image matting is performed to ensure smoothness of the object boundary. Comprehensive evaluation on various color editing examples demonstrates that our approach outperforms existing state-of-the-art color editing algorithms.


2021 ◽  
Vol 8 (2) ◽  
pp. 257-272
Author(s):  
Yunai Yi ◽  
Diya Sun ◽  
Peixin Li ◽  
Tae-Kyun Kim ◽  
Tianmin Xu ◽  
...  

AbstractThis paper presents an unsupervised clustering random-forest-based metric for affinity estimation in large and high-dimensional data. The criterion used for node splitting during forest construction can handle rank-deficiency when measuring cluster compactness. The binary forest-based metric is extended to continuous metrics by exploiting both the common traversal path and the smallest shared parent node.The proposed forest-based metric efficiently estimates affinity by passing down data pairs in the forest using a limited number of decision trees. A pseudo-leaf-splitting (PLS) algorithm is introduced to account for spatial relationships, which regularizes affinity measures and overcomes inconsistent leaf assign-ments. The random-forest-based metric with PLS facilitates the establishment of consistent and point-wise correspondences. The proposed method has been applied to automatic phrase recognition using color and depth videos and point-wise correspondence. Extensive experiments demonstrate the effectiveness of the proposed method in affinity estimation in a comparison with the state-of-the-art.


2021 ◽  
Vol 8 (2) ◽  
pp. 273-287
Author(s):  
Xuewei Bian ◽  
Chaoqun Wang ◽  
Weize Quan ◽  
Juntao Ye ◽  
Xiaopeng Zhang ◽  
...  

AbstractRecent learning-based approaches show promising performance improvement for the scene text removal task but usually leave several remnants of text and provide visually unpleasant results. In this work, a novel end-to-end framework is proposed based on accurate text stroke detection. Specifically, the text removal problem is decoupled into text stroke detection and stroke removal; we design separate networks to solve these two subproblems, the latter being a generative network. These two networks are combined as a processing unit, which is cascaded to obtain our final model for text removal. Experimental results demonstrate that the proposed method substantially outperforms the state-of-the-art for locating and erasing scene text. A new large-scale real-world dataset with 12,120 images has been constructed and is being made available to facilitate research, as current publicly available datasets are mainly synthetic so cannot properly measure the performance of different methods.


2021 ◽  
Vol 8 (2) ◽  
pp. 303-315
Author(s):  
Jingyu Gong ◽  
Zhou Ye ◽  
Lizhuang Ma

AbstractA significant performance boost has been achieved in point cloud semantic segmentation by utilization of the encoder-decoder architecture and novel convolution operations for point clouds. However, co-occurrence relationships within a local region which can directly influence segmentation results are usually ignored by current works. In this paper, we propose a neighborhood co-occurrence matrix (NCM) to model local co-occurrence relationships in a point cloud. We generate target NCM and prediction NCM from semantic labels and a prediction map respectively. Then, Kullback-Leibler (KL) divergence is used to maximize the similarity between the target and prediction NCMs to learn the co-occurrence relationship. Moreover, for large scenes where the NCMs for a sampled point cloud and the whole scene differ greatly, we introduce a reverse form of KL divergence which can better handle the difference to supervise the prediction NCMs. We integrate our method into an existing backbone and conduct comprehensive experiments on three datasets: Semantic3D for outdoor space segmentation, and S3DIS and ScanNet v2 for indoor scene segmentation. Results indicate that our method can significantly improve upon the backbone and outperform many leading competitors.


2021 ◽  
Vol 8 (2) ◽  
pp. 177-198
Author(s):  
Wenshi Wu ◽  
Beibei Wang ◽  
Ling-Qi Yan

AbstractParticipating media are frequent in real-world scenes, whether they contain milk, fruit juice, oil, or muddy water in a river or the ocean. Incoming light interacts with these participating media in complex ways: refraction at boundaries and scattering and absorption inside volumes. The radiative transfer equation is the key to solving this problem. There are several categories of rendering methods which are all based on this equation, but using different solutions. In this paper, we introduce these groups, which include volume density estimation based approaches, virtual point/ray/beam lights, point based approaches, Monte Carlo based approaches, acceleration techniques, accurate single scattering methods, neural network based methods, and spatially-correlated participating media related methods. As well as discussing these methods, we consider the challenges and open problems in this research area.


2021 ◽  
Vol 8 (2) ◽  
pp. 289-302
Author(s):  
Anna Darzi ◽  
Itai Lang ◽  
Ashutosh Taklikar ◽  
Hadar Averbuch-Elor ◽  
Shai Avidan

AbstractAs image generation techniques mature, there is a growing interest in explainable representations that are easy to understand and intuitive to manipulate. In this work, we turn to co-occurrence statistics, which have long been used for texture analysis, to learn a controllable texture synthesis model. We propose a fully convolutional generative adversarial network, conditioned locally on co-occurrence statistics, to generate arbitrarily large images while having local, interpretable control over texture appearance. To encourage fidelity to the input condition, we introduce a novel differentiable co-occurrence loss that is integrated seamlessly into our framework in an end-to-end fashion. We demonstrate that our solution offers a stable, intuitive, and interpretable latent representation for texture synthesis, which can be used to generate smooth texture morphs between different textures. We further show an interactive texture tool that allows a user to adjust local characteristics of the synthesized texture by directly using the co-occurrence values.


2021 ◽  
Vol 8 (2) ◽  
pp. 213-224
Author(s):  
Pei Lv ◽  
Hui Wei ◽  
Tianxin Gu ◽  
Yuzhen Zhang ◽  
Xiaoheng Jiang ◽  
...  

AbstractTrajectory prediction is a fundamental and challenging task for numerous applications, such as autonomous driving and intelligent robots. Current works typically treat pedestrian trajectories as a series of 2D point coordinates. However, in real scenarios, the trajectory often exhibits randomness, and has its own probability distribution. Inspired by this observation and other movement characteristics of pedestrians, we propose a simple and intuitive movement description called a trajectory distribution, which maps the coordinates of the pedestrian trajectory to a 2D Gaussian distribution in space. Based on this novel description, we develop a new trajectory prediction method, which we call the social probability method. The method combines trajectory distributions and powerful convolutional recurrent neural networks. Both the input and output of our method are trajectory distributions, which provide the recurrent neural network with sufficient spatial and random information about moving pedestrians. Furthermore, the social probability method extracts spatio-temporal features directly from the new movement description to generate robust and accurate predictions. Experiments on public benchmark datasets show the effectiveness of the proposed method.


2021 ◽  
Vol 8 (2) ◽  
pp. 225-237
Author(s):  
Yanlong Tang ◽  
Yun Zhang ◽  
Xiaoguang Han ◽  
Fang-Lue Zhang ◽  
Yu-Kun Lai ◽  
...  

AbstractThere is a steadily growing range of applications that can benefit from facial reconstruction techniques, leading to an increasing demand for reconstruction of high-quality 3D face models. While it is an important expressive part of the human face, the nose has received less attention than other expressive regions in the face reconstruction literature. When applying existing reconstruction methods to facial images, the reconstructed nose models are often inconsistent with the desired shape and expression. In this paper, we propose a coarse-to-fine 3D nose reconstruction and correction pipeline to build a nose model from a single image, where 3D and 2D nose curve correspondences are adaptively updated and refined. We first correct the reconstruction result coarsely using constraints of 3D-2D sparse landmark correspondences, and then heuristically update a dense 3D-2D curve correspondence based on the coarsely corrected result. A final refinement step is performed to correct the shape based on the updated 3D-2D dense curve constraints. Experimental results show the advantages of our method for 3D nose reconstruction over existing methods.


Sign in / Sign up

Export Citation Format

Share Document