Dust-ion-acoustic solitary waves and their multi-dimensional instability in a magnetized dusty electronegative plasma with trapped negative ions

2011 ◽  
Vol 335 (2) ◽  
pp. 425-433 ◽  
Author(s):  
O. Rahman ◽  
A. A. Mamun ◽  
K. S. Ashrafi
2010 ◽  
Vol 76 (3-4) ◽  
pp. 409-418 ◽  
Author(s):  
A. A. MAMUN ◽  
K. S. ASHRAFI ◽  
M. G. M. ANOWAR

AbstractThe dust ion-acoustic solitary waves (SWs) in an unmagnetized dusty adiabatic electronegative plasma containing inertialess adiabatic electrons, inertial single charged adiabatic positive and negative ions, and stationary arbitrarily (positively and negatively) charged dust have been theoretically studied. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits an SW solution. The combined effects of the adiabaticity of plasma particles, inertia of positive or negative ions, and presence of positively or negatively charged dust, which are found to significantly modify the basic features of small but finite-amplitude dust-ion-acoustic SWs, are explicitly examined. The implications of our results in space and laboratory dusty electronegative plasmas are briefly discussed.


2008 ◽  
Vol 15 (6) ◽  
pp. 063701 ◽  
Author(s):  
F. Sayed ◽  
M. M. Haider ◽  
A. A. Mamun ◽  
P. K. Shukla ◽  
B. Eliasson ◽  
...  

2011 ◽  
Author(s):  
B. S. Chahal ◽  
N. S. Saini ◽  
A. S. Bains ◽  
Vladimir Yu. Nosenko ◽  
Padma K. Shukla ◽  
...  

2013 ◽  
Vol 88 (1) ◽  
pp. 015501 ◽  
Author(s):  
S Akter ◽  
M M Haider ◽  
S S Duha ◽  
M Salahuddin ◽  
A A Mamun

2010 ◽  
Vol 65 (4) ◽  
pp. 315-328 ◽  
Author(s):  
Tarsem Singh Gill ◽  
Parveen Bala ◽  
Harvinder Kaur

In the present investigation, we have studied ion-acoustic solitary waves in a plasma consisting of warm positive and negative ions and nonisothermal electron distribution. We have used reductive perturbation theory (RPT) and derived a dispersion relation which supports only two ion-acoustic modes, viz. slow and fast. The expression for phase velocities of these modes is observed to be a function of parameters like nonisothermality, charge and mass ratio, and relative temperature of ions. A modified Korteweg-de Vries (KdV) equation with a (1+1/2) nonlinearity, also known as Schamel-mKdV model, is derived. RPT is further extended to include the contribution of higher-order terms. The results of numerical computation for such contributions are shown in the form of graphs in different parameter regimes for both, slow and fast ion-acoustic solitary waves having several interesting features. For the departure from the isothermally distributed electrons, a generalized KdV equation is derived and solved. It is observed that both rarefactive and compressive solitons exist for the isothermal case. However, nonisothermality supports only the compressive type of solitons in the given parameter regime.


Sign in / Sign up

Export Citation Format

Share Document